Introduction to C++

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) C++ Introduction 1/385

Part 1

Getting Started

Philip Blakely (LSC) C++ Introduction 2/385

Introduction

Outline

@ Preliminaries

Philip Blakely (LSC) C++ Introduction 3/385

Introduction

Suggested Reading

There are few books available that teach C++ well, and are not too
advanced

@ C++ Primer, Lippman, Lajoie, Moo, Addison Wesley
(Introductory)

@ Programming: Principles and Practice Using C++, Bjarne
Stroustrup. (Introductory to Advanced)

@ The C++ Programming Language 3rd edition, Bjarne Stroustrup,
Addison Wesley (Advanced / Steep learning curve)

Reference manuals

@ http://en.cppreference.com - maintained by multiple
C++ experts.

@ www.cplusplus.com/reference

@ http://www.parashift.com/c++-faq-lite/
(More an FAQ than a reference)

Philip Blakely (LSC) C++ Introduction 4/385

http://en.cppreference.com
www.cplusplus.com/reference
http://www.parashift.com/c++-faq-lite/

Introduction

Comments on course content

@ Some experience of programming (in any language) will help
(I will try to not to assume anything, though)

Experience of Linux/UNIX-based OS helpful

This course will mostly teach the C++-language, not programming
style or good practice.

All compilation commands will assume Linux, using gcc, but
should be transferable to any other compiler/OS with minimal
man-page reading

o Twin-hemisphere electro-colloidal brain with cognitive functions
necessary

Philip Blakely (LSC) C++ Introduction 5/385

Introduction

Overview of C

C was developed in the early 1970s as a replacement for assembly
languages

(Fairly) simple correspondance between C statements and
assembler instructions

C is a low-level language, used mostly for systems programming

Very easy to make hard-to-find errors; e.g. no bounds-checking on
arrays

However, its relative simplicity can lead to efficient programs -
highly dependent on compiler optimizations

Philip Blakely (LSC) C++ Introduction 6 /385

Introduction

Overview of C++

Developed as a fusion of C and high-level features from Simula,
starting in 1979 by Bjarne Stroustrup

@ The aim was a language with the performance of C but with
object-oriented features (classes) and meta-programming
(templates)

Intended to make C++ useful for advanced algorithms
with complex designs but still suited to HPC.

C++ includes many advanced, generic, algorithms for operations
on data-structures

o C++ should be treated as a separate language from C; prior
knowledge of C is not necessary (and may be a detriment).

C++ is platform-independent; what works in Linux will work in
Windows (and vice-versa)

Philip Blakely (LSC) C++ Introduction 7/385

Introduction

The first C++ standard emerged in 1998

Corrections and additions were made to the standard in 2003
Major updates occured in 2011, 2014, and 2017.

C++ is an evolving language

C++ is becoming more and more complex; possibly too complex

This course will not introduce anything from C++17; all examples
should work with a C++14-compliant compiler.

Philip Blakely (LSC) C++ Introduction 8 /385

Introduction

Advantages of C++

Can be optimized fairly well by modern compilers

With object-oriented features and operator overloading, allows
programmers to create abstractions and easy-to-read code

Complex operations and expressions can be written on a single
(short) line

o C++ standard is such that compilers are allowed to “see through”
function calls and generate optimized code equivalent to
hand-coded C.

e If you avoid advanced features (STL, templates, inheritance), it’s
fairly user-friendly

Philip Blakely (LSC) C++ Introduction 9/385

Introduction

Disadvantages of C++

C++ is a complex language and takes a long time to learn
C++ enables you to shoot yourself in the foot in myriad ways
It is still relatively easy to make hard-to-find bugs

Syntax errors can be hard to find, even with compiler help

Can be easier to write efficient code in Fortran (latest version)

Philip Blakely (LSC) C++ Introduction 10 /385

Introduction

Alternative Languages

There are alternatives to C++ for scientific computing

e FORTRAN/Fortran - fairly widely used, easier to learn, harder to
make undetectable mistakes
far better at efficient array operations than C/C++

@ Python - Easier to use - at the expense of some performance

e Matlab (or similar package) - Only suitable for some tasks - not
sufficiently general

Philip Blakely (LSC) C++ Introduction 11 /385

Introduction

Types of language

o Computer langauges range from low-level to high-level, depending
on how far removed the language instructions are from what
happens on the CPU

Assembler / machine-code is low-level

e C and old FORTRAN are fairly low-level

e C++ and modern Fortran are high-level

e Java, MatLab, Python, etc. are high-level

o Lower-level languages are often harder to use correctly,
although higher-level ones can have too many features and be
confusing

e Even high-level languages use routines written in low-level
languages for important computations

Philip Blakely (LSC) C++ Introduction 12 /385

Basics

Outline

© Computer basics

Philip Blakely (LSC) C++ Introduction 13 /385

Basics

What is a computer?

e For our purposes, a computer consists of a processor (CPU) and
storage

The storage consists of memory (both on CPU and RAM) and
hard-disk

@ The processor executes instructions that are stored in memory
using data that is in the memory

@ The results are output in some fashion (to screen, disk, etc.)

Philip Blakely (LSC) C++ Introduction 14 /385

Basics

Binary

These days, all computers work in binary
Everything is represented as Os and 1s

A single binary digit is a bit

Eight bits make up a byte.

All data, text, files, images, programs, arithmetic are represented
as a series of bits

The interpretation of these is up to the CPU or the program or
operating system running on the CPU.

Philip Blakely (LSC) C++ Introduction 15 /385

Basics

Representation of integers in binary

o Positive integers can easily be represented in binary:
e 4+— 100
e 30— 11110

@ Negative integers can also be represented in binary.

@ The most common method is two’s-complement, where a negative
integer —m is represented in binary by the positive integer 2" — m
for some value of n which is independent of m.

o (Although n will depend on the range of integers that is required
to be represented.)

o For example, if n = 8, then:

—15— 256 — 15 = 241 — 11110001

o —14+— 256 — 14 = 242 — 11110010
o —127+— 256 — 127 = 129 — 10000001
o —128 +— 256 — 128 = 128 — 10000000

@ It should therefore be clear that the range of integers that can be

contained in 8 bits is [—128, 127].

Philip Blakely (LSC) C++ Introduction 16 /385

Basics

Real numbers in binary

Representing real numbers in binary is non-trivial

Roughly, they are represented as an expansion in the inverses of

powers of two
N

7
a = -
22
i=1
where a € [0,1) and a; = 0,1, and N is fixed

@ Given a finite number of bits, we can only represent real numbers
to a particular precision

Details and their consequences are too complicated to cover in this
course.

For more details see “What every computer-scientist should know
about floating-point numbers” (available online)

Philip Blakely (LSC) C++ Introduction 17 /385

Basics

How does a CPU work?

o Computers execute a series of simple instructions such as:

Read the data from memory location 12

Read the data from memory location 13

Add the two values

Assign the result to memory location 14

@ These instructions are processor-specific (different for Intel and
AMD processors, even between different Intel processors)

@ The instructions are expressed in binary, e.g.

e 00001101100
e 00001101101
e 01001101001
e 00001111110

@ One (bad) way of expressing the power of a chip is in (millions of)
instructions per second

o The way that instructions are executed is more complicated than
this...

Philip Blakely (LSC) C++ Introduction 18 /385

Basics

More on the CPU

When a processor needs to act on user-supplied data, it requests
this from the main memory

@ The memory is separate from the CPU, and communciation
between them is governed by the motherboard circuitry

Fetching data from the main memory takes a relatively long time.

As a rough guide, a processor may be able to execute 10-100
instructions in the time it takes to read a byte of data from
memory.

@ This overhead (latency) can be partially overcome by a series of
techniques used in most modern CPUs

Philip Blakely (LSC) C++ Introduction 19/385

Basics

CPU Schematic

o Floating point and integer o
operations done separately for g
historical reasons o

. Operations -

e Integer/FP operations can only act /4 c

@)
. . .
on values in registers et || Q)
and decode

@ There are of the order of 100 , >,

registers in total Floating point (o)
operations E
@ Processor can access these very) | o
uickl Floating point
quickly >
registers |
@ Modern processors can perform more

than one instruction per clock cycle Much simplified
and not to scale!

Philip Blakely (LSC) C++ Introduction 20 /385

Basics

CPU Cache Schematic

Solution to memory latency is caching

Store copy of recently used data in a fast-access cache so it can be
retrieved again quickly.

Utility of this relies on programmer using data in a sensible fashion

Arranging for cache-reuse can be very important for speed

@ Not strictly under programmer’s control, but “locality of
reference” is usually a safe bet.

Main

Processor
Memory

L1 cache

Philip Blakely (LSC) C++ Introduction 21 /385

Basics

The point of programming

Given the preceeding, how can we program computers efficiently?

Answer is to have a standard, high-level, language

So, we might express the previous binary as:
totalBill = foodCost + serviceCharge;

and allow a “compiler” to translate this into the binary
instructions above

We then delegate the responsibility of keeping up with different
processors to the compiler-writers.

o We are left with the “simple” task of writing human-readable
instructions.

Philip Blakely (LSC) C++ Introduction 22 /385

Basics

Fundamentals of Programming

e Even with high-level languages, it is still hard to write efficient
and correct programs

Source code should be human-readable first, and efficient second

It is useless having a program that runs fast if you can’t remember
how it works (either to implement a new feature or to describe it
to someone else)

@ On very rare occasions, efficiency may be more important than
human-readablity

A good programmer is someone who can write correct, readable,
maintainable, and efficient code (in decreasing order of
importance)

Philip Blakely (LSC) C++ Introduction 23 /385

Basics

How to write a program

Switch off your computer

Determine what it is you want your program to do

o This will be at a fairly high-level:

“The program should solve any given ODE approximately”

Determine the required features of your algorithm:

“Assuming we use an integration step Ax, the accuracy of the

final answer should converge as Az”

o Find a suitable algorithm to perform this process: “Use lst-order
forward Euler”

@ An algorithm is the sort of description of a process that you find

in a text-book or academic paper.

It will include sentences, equations, and maybe an example, and

even some validated results
@ You should first convince yourself that the algorithm is correct
either by doing a simple version with pen and paper

or by looking at other people’s results using the same algorithm.
Philip Blakely (LSC) C++ Introduction 24 /385

Basics

How to write a program ctd.

Now start writing your program in pseudo code
Pseudo-code is human-readable instructions written as comments:

o // Read in initial state x, final time T, and dt from user
e // Start integration at x

o // Loop until t > T

o // Use Euler to determine updated x

e // Update and output x

e // Add dt to current time

e // End loop

Now we can start programming!

Below each line of pseudo code, put the appropriate
language-constructs for that instruction.

e Each line of pseudo-code should give only a few lines (~ 5) of code

Philip Blakely (LSC) C++ Introduction 25 /385

Basics

Expanding the pseudocode

// Read 1in initial state x, final time T, and dt from user
std::cin >> startX >> T >> dt;
// Start integration at x
double x = startX;
// Loop until t > T
while(t < T){
// Use Euler to determine updated x
x = x + dt x df(x, t);
// Update and output x
std::cout << x << std::endl;
// Add dt to current time
t = t + dt;
// End loop

}

Philip Blakely (LSC) C++ Introduction 26 / 385

Basics

Nomenclature

Definitions of various programming terms:

e Variable: A label for a place in memory where a particular value
or object is stored

Type: The kind of information stored in a variable
Array: An ordered set of values of the same type.
Boolean type: Choice of two values (true/false or 1/0).
String: A string of characters, e.g. “Hello World!”

Seg(mentation) fault: Usually caused by out-of-bounds memory
access.

Philip Blakely (LSC) C++ Introduction 27 /385

First steps

Outline

© First steps in C++

Philip Blakely (LSC) C++ Introduction

First steps

Hello World - simple C++ program

#include <iostream>
int main (void)

std::cout<< "Hello World" << std::endl;
return 0;

}

o Includes the system header file defining IO functions

Philip Blakely (LSC) C++ Introduction 29 /385

First steps

Hello World - simple C++ program

#include <iostream>
int main (void)

std::cout<< "Hello World" << std::endl;
return 0;

}
o Includes the system header file defining IO functions

@ The first function to be called within a C++ program is (usually)
main

Philip Blakely (LSC) C++ Introduction

First steps

Hello World - simple C++ program

#include <iostream>
int main (void)

std::cout<< "Hello World" << std::endl;
return 0;

}

o Includes the system header file defining IO functions

@ The first function to be called within a C++ program is (usually)
main

@ std::cout is a stream, which goes to stdout
Equivalently, std: :cerr goes to stderr

Philip Blakely (LSC) C++ Introduction 29 /385

First steps

Hello World - simple C++ program

#include <iostream>
int main (void)

std::cout<< "Hello World" << std::endl;
return 0;

}

o Includes the system header file defining IO functions

@ The first function to be called within a C++ program is (usually)
main

@ std::cout is a stream, which goes to stdout
Equivalently, std: :cerr goes to stderr

o We're sending the string “Hello World!” to the standard output
stream, usually the terminal

Philip Blakely (LSC) C++ Introduction 29 /385

First steps

Hello World - simple C++ program

#include <iostream>
int main (void)

std::cout<< "Hello World" << std::endl;
return 0;

}

o Includes the system header file defining IO functions

@ The first function to be called within a C++ program is (usually)
main

@ std::cout is a stream, which goes to stdout
Equivalently, std: :cerr goes to stderr

o We're sending the string “Hello World!” to the standard output
stream, usually the terminal

@ Return an exit code zero to the OS

Philip Blakely (LSC) C++ Introduction 29 /385

First steps

Compiling and running

Before the program can be run, it needs to be compiled

This translates the C++ code into machine code that runs directly
on the computer

A lot of work is done at compile-time
@ This makes for more efficient code at run-time

To compile, type: g++ helloWorld.C -o helloWorld
To run, type ./helloWorld

The resulting executable only needs C++ libraries present on the
system to run.

Philip Blakely (LSC) C++ Introduction 30/385

First steps

Compiler Warnings

The compiler will report any errors in C++ syntax

Most compilers are also capable of suggesting where you may have
made errors (even if it’s valid C++)

Use g++ helloWorld.C -o helloWorld -Wall -Wextra
-pedantic

Pay attention to all the warnings!

Only ignore them if you know why they’ve occured in the first
place.

They will teach you more about the workings of C++.

Consider using -Werror, which makes all warnings into errors and
forces you to understand and fix them.

Philip Blakely (LSC) C++ Introduction 31/385

First steps

Compilers

Throughout this course I shall assume the compiler is g++.

This is open-source, and reasonably robust and standards
compliant.

I strongly recommend using gcc 9.4.0 at least.

This will compile using the C++14 standard by default; later
versions of the compiler may change to a later default standard.

@ Other compilers exist, e.g. icpc (Intel) and clang++ and have
equivalent options.

o It may be advisable to try compiling your code with multiple
compilers and comparing behaviour (should not change, unless you
or the compiler writers have made an error) and performance
(more likely to change).

Philip Blakely (LSC) C++ Introduction 32 /385

First steps

Undefined behaviour

@ The C++ standard refers to some constructs as leading to
“undefined behaviour”

For example, assigning a too large value to a variable

In theory, the result of this could be anything up to and including
“delete all your files and OS”

A better result would be to just abort the program

o Unfortunately, many compilers produce executables that will
attempt to carry on, and produce essentially random results

o Even worse, this behaviour may change depending on what
options you pass to the compiler (especially optimization)

This can lead to many hours spent trying to track down the
problem

Philip Blakely (LSC) C++ Introduction 33 /385

First steps

Implementation-defined behaviour

@ There are some C++ constructs that have “implementation-defined
behaviour”

For example, (—5)/2 may be -2 or -3

This is guaranteed to be consistent independent of any compiler
flags

However, it is not necessarily consistent across different compilers
or versions of the same compiler

This may cause you problems if you switch from gcc to
Microsoft’s compiler, for example.

Philip Blakely (LSC) C++ Introduction 34 /385

First steps

Optimization

Optimization of C++ programs is not trivial. There are rules
about the reordering of sub-expressions.

Optimization may not alter the output of a program

Arithmetic expressions can be reordered so long as the result
would be unchanged, i.e. associativity and commutivity are

assumed.

(This makes some restrictions where signed overflow is concerned)

Overloaded operators are not assumed to be associative or
commutative

Philip Blakely (LSC) C++ Introduction 35/385

First steps

Hello Name

#include <iostream>
#include <string> // Definition of a string of chars

int main(void){

std::string name;
std::cout << "What is your name?" << std::flush;
std::cin >> name; // Reads from stdin
int num; // Define an integer called num
std::cout << "What is your favourite integer?" << std::flush;
std::cin >> num; // Read an integer from stdin
std::cout << "Hello " << name

<< ", your favourite number is "

<< num << std::endl; // Output data
return 0;

}

@ std::cout/cin recognises and formats types automatically
@ std::endl marks the end of a line

@ std:: is a namespace - just accept this for the moment.

Philip Blakely (LSC) C++ Introduction 36 /385

First steps

Hello Name

#include <iostream>
#include <string> // Definition of a string of chars

int main(void){

std::string name;
std::cout << "What is your name?" << std::flush;
std::cin >> name; // Reads from stdin
int num; // Define an integer called num
std::cout << "What is your favourite integer?" << std::flush;
std::cin >> num; // Read an integer from stdin
std::cout << "Hello " << name

<< ", your favourite number is "

<< num << std::endl; // Output data
return 0;

}

@ std::cout/cin recognises and formats types automatically
@ std::endl marks the end of a line

@ std:: is a namespace - just accept this for the moment.

Philip Blakely (LSC) C++ Introduction 36 /385

First steps

Hello Name

#include <iostream>
#include <string> // Definition of a string of chars

int main(void){

std::string name;
std::cout << "What is your name?" << std::flush;
std::cin >> name; // Reads from stdin
int num; // Define an integer called num
std::cout << "What is your favourite integer?" << std::flush;
std::cin >> num; // Read an integer from stdin
std::cout << "Hello " << name

<< ", your favourite number is "

<< num << std::endl; // Output data
return 0;

}

@ std::cout/cin recognises and formats types automatically
@ std::endl marks the end of a line

@ std:: is a namespace - just accept this for the moment.

Philip Blakely (LSC) C++ Introduction 36 /385

First steps

Hello Name

#include <iostream>
#include <string> // Definition of a string of chars

int main(void){

std::string name;
std::cout << "What is your name?" << std::flush;
std::cin >> name; // Reads from stdin
int num; // Define an integer called num
std::cout << "What is your favourite integer?" << std::flush;
std::cin >> num; // Read an integer from stdin
std::cout << "Hello " << name

<< ", your favourite number is "

<< num << std::endl; // Output data
return 0;

}

@ std::cout/cin recognises and formats types automatically
@ std::endl marks the end of a line

@ std:: is a namespace - just accept this for the moment.

Philip Blakely (LSC) C++ Introduction 36 /385

First steps

Hello Name

#include <iostream>
#include <string> // Definition of a string of chars

int main(void){

std::string name;
std::cout << "What is your name?" << std::flush;
std::cin >> name; // Reads from stdin
int num; // Define an integer called num
std::cout << "What is your favourite integer?" << std::flush;
std::cin >> num; // Read an integer from stdin
std::cout << "Hello " << name

<< ", your favourite number is "

<< num << std::endl; // Output data
return 0;

}

@ std::cout/cin recognises and formats types automatically
@ std::endl marks the end of a line

@ std:: is a namespace - just accept this for the moment.

Philip Blakely (LSC) C++ Introduction 36 /385

First steps

Comments

@ When writing programs it is very useful to put comments in.
@ Anything following // up to the end of the line is ignored:

// Compute root of quadratic
float x = (—b + sgrt(bxb — 4xaxc)) / (2xa);

o Anything between /* */ is ignored:

/+ Solve ODE using lst order Euler method.
For details see Unman, Wittering, and Zigo (42nd edition,
*/
...Code goes here...
@ You will need reminding of what your code does when you return
to it tomorrow, next week, or next year. Make useful comments!
o Comments such as

int a = 5; // Define integer a to be 5

are worse than useless.
Philip Blakely (LSC) C++ Introduction 37 /385

First steps

Whitespace

@ Spaces, tabs, and newlines (whitespace) are essentially irrelevant
in C++
e So long as separate tokens (variable names, operators, keywords)
are separated, there is no problem
std::
cout
<< "My text" <<
std
endl;
is equivalent to
std::cout << "My text" << std::endl;

(but is far less readable).

Philip Blakely (LSC) C++ Introduction 38 /385

First steps

Variable names

Variable names are very important in programming

They should describe what they refer to in a succinct way

@ In C++ variable names can consist of A-Z, a-z, 0-9, and _ (but
cannot start with a digit)

@ Good variable names include:

numVehicles, timestep, distToNextTown

Bad variable names include:
zz, number0f0bjectsInThisList0fVehicles,
11, dghRType

Philip Blakely (LSC) C++ Introduction 39 /385

First steps

Code formatting

Use an editor with automatic code formatting and indentation.
Use one statement per line.

Braces should go on their own lines.

Statements inside braces should be consistently indented by 2-4
spaces.

Use blank lines liberally; they improve readability.

My code examples largely stick to these suggestions, except where
space saving to fit on one slide.

@ None of these are requirements for a valid C++ program, but will
make your code far more readable and easy to understand.

Philip Blakely (LSC) C++ Introduction 40 /385

