
Part X

C++ Standard Template Library

Philip Blakely (LSC) C++ Introduction 286 / 385

Typedef

Outline

37 Typedefs

38 Standard Template Library

39 Vectors

40 Iterators

41 Lists

42 Algorithms

43 Map

Philip Blakely (LSC) C++ Introduction 287 / 385

Typedef

Typedef

Within C++ type-names can get very long

We can use typedef to create a shorthand

typedef std::vector<double> RealVec;
RealVec a; // same as std::vector<double> a

Essentially creating an alias for other types

This is a C++ construct, not done by preprocessor

Philip Blakely (LSC) C++ Introduction 288 / 385

Typedef

Typedefs in classes

You can define typedefs within a class as well:

class MyVector{
public:

typedef double value type;
private:

double* data;
};

You can then chain typedefs together as:

typedef MyVector V;
V v;
V::value type a = v[0];

The typedef does not create a new type, merely an alias
(shorthand).

Philip Blakely (LSC) C++ Introduction 289 / 385

Typedef

More typedefs

Another reason for using typedef is for maintainability

Suppose you had a code in which the number of widget types was
known to be less than 255:

You could use char to identify a widget.

If the number of widget types increased to 300, would need to
replace all instances of char by int, unless you had:

typedef char WidgetId;

in which case changing it to

typedef int WidgetId;

would work.
This also leads to more readable code: Which is more readable:

void sellWidgets(int, int);

or

void sellWidgets(WidgetId, int);

Philip Blakely (LSC) C++ Introduction 290 / 385

STL

Outline

37 Typedefs

38 Standard Template Library

39 Vectors

40 Iterators

41 Lists

42 Algorithms

43 Map

Philip Blakely (LSC) C++ Introduction 291 / 385

STL

STL

The Standard Template Library is one of the most important
parts of C++

The principle of this is to implement support for generic
data-structures and algorithms, which can be applied to any
(sensible) data-type

Various functions have guaranteed computational complexity.

Examples are finding, sorting, summing (accumulating), and
iterating

Philip Blakely (LSC) C++ Introduction 292 / 385

STL

Data-structures

Firstly, we need to cover some standard containers:

pair, tuple, vector, map, list, unordered map

These are standard constructs from computer science

Each of these (and some others) is present as a generic form in the
STL.

We have already seen the fixed-size std::array and hints of
std::vector.

Philip Blakely (LSC) C++ Introduction 293 / 385

STL

pair

A std::pair is a pair of values of any type:

std::pair<int, double> a(42, 3.1415926535);
a = std::make pair(3, 2.71828182843);
int t = a.first;
double e = a.second;

Philip Blakely (LSC) C++ Introduction 294 / 385

STL

tuple

A std::tuple is a set of values of any type:

std::tuple<int, double, std::string> a(42, 3.1415926535,
"Hello!");

int t = std::get<0>(a);

... and can be used to return multiple values from a function:

std::tuple<int, bool> findElt(){
return std::make tuple(42, true);

}

int val; bool found;
std::tie(val, found) = findElt();

Philip Blakely (LSC) C++ Introduction 295 / 385

Vectors

Outline

37 Typedefs

38 Standard Template Library

39 Vectors

40 Iterators

41 Lists

42 Algorithms

43 Map

Philip Blakely (LSC) C++ Introduction 296 / 385

Vectors

vector

A vector is an ordered set of items of the same type.

It allows for random access to the elements in constant time

#include <vector>
std::vector<int> a;
a.resize(5);
a[0] = 3;
a[6] = 4; // Will cause undefined behaviour
for(size t i=0 ; i < a.size() ; i++){
a[i] = i;

}

So a is a vector of integers and knows about its own size

It can be resized at will (unlike basic arrays)

If enlarged, it may result in copying of data to a new region of
memory

It handles memory allocation and freeing automatically, and is
destroyed when it goes out of scope

The object is stored on the stack, but its data is (probably) stored
on the heap.
Philip Blakely (LSC) C++ Introduction 297 / 385

Vectors

Vector constructors

The easiest way to initialize a small vector is to use an initializer
list:

std::vector<int> aVec{1,4,9,16};

You can also construct a std::vector by copying from an array:

std::array<int,4> a = {1,4,9,16};
std::vector<int> aVec(&a[0], &a[4]);

Note that a[4] is one after the end of the array. The copy is done
up to, but not including, this element, so a[4] is never read.

Note that sizeof does not take into account the run-time size of a
vector:

std::vector<int> v(10);
std::cout << sizeof(v) << std::endl;

outputs 24 on my computer, but may be wildly different on yours.

Use v.size() instead.

Philip Blakely (LSC) C++ Introduction 298 / 385

Vectors

Vector assignments

Complete assignments can be made later to a vector:

std::vector<int> v;
std::array<int,4> a = {1,4,9,16};
v.assign(a, &a[4]);

Or to set v to be of size 4 all with value 42:

v.assign(4, 42);

A vector is guaranteed to have its data held contiguously in
memory (i.e. a[N] is followed directly by a[N+1] in memory).

Other containers do not have this property.

The following is therefore valid:

std::vector<int> v(10);
int* vStart = &v[0];
int v5 = *(vStart + 5); // same as v[5]

Philip Blakely (LSC) C++ Introduction 299 / 385

Vectors

Vector operations

std::vector<int> a;

a.at(i) = 5;// Same as a[i] but with bounds checking

bool isEmpty = a.empty();

a.clear(); // Clears contents of a

a.push back(5); // Inserts "5" as extra element at end

int first = a.front(); // Gets first element of a

int last = a.back(); // Gets last element of a

Philip Blakely (LSC) C++ Introduction 300 / 385

Vectors

Type conversion of containers

There is no implicit conversion between containers of different
types.

For example:

std::vector<int> a(5, 1); // Length 5, all elts=1
std::vector<double> b = a; // Compile−time failure

Even though there is a known type conversion between int and
double, this does not translate into a type conversion between
containers of these types.

If you wish to do the conversion, you have to do it element by
element, using a loop.

Philip Blakely (LSC) C++ Introduction 301 / 385

Iterators

Outline

37 Typedefs

38 Standard Template Library

39 Vectors

40 Iterators

41 Lists

42 Algorithms

43 Map

Philip Blakely (LSC) C++ Introduction 302 / 385

Iterators

Iterators

An iterator is a type that points to a single element of a data
structure, and allows iteration over that structure

It dereferences to an element of the data-structure

std::vector<int> a;
std::vector<int>::iterator vectorIter;
for(vectorIter = a.begin() ; vectorIter != a.end() ;

++vectorIter){
(*vectorIter) = 1;

}

This sets all elements of the vector a to be 1.

Note that a.end() is one element past the end of a, so that != is
the correct test to use

There is usually no ordering on iterators, so != is used, rather
than <

The reasons for this slightly verbose notation will become clearer
later.
Philip Blakely (LSC) C++ Introduction 303 / 385

Iterators

Const-iterators

It is also possible to have iterators over constant structures:

int f(const std::vector<int>& a){
int sum = 0;
std::vector<int>::const iterator aIter;
for(aIter = a.begin() ; aIter != a.end() ; ++aIter){
sum += *aIter;

}
return sum;
}

It is not possible to alter an object through a const iterator.

It is not possible to take an iterator from a constant object.

Philip Blakely (LSC) C++ Introduction 304 / 385

Lists

Outline

37 Typedefs

38 Standard Template Library

39 Vectors

40 Iterators

41 Lists

42 Algorithms

43 Map

Philip Blakely (LSC) C++ Introduction 305 / 385

Lists

Linked List

A linked-list is an ordered sequence of elements of the same type
where each element has a pointer to its immediate neighbouring
element(s)

struct ListElt{
int value;
ListElt* prev;
ListElt* next;

};

An element can be inserted anywhere in the list by changing only
its neighbouring elements, i.e. their next and prev pointers.

This is an advantage over a vector where insertion requires all the
elements after it to be moved in memory.

Philip Blakely (LSC) C++ Introduction 306 / 385

Lists

std::list

#include <list>

std::list<int> l;

std::cout << l.size(); // 0

l.push back(5);

l.push front(10); // Not possible with a vector

std::cout << l.front(); // 10

std::cout << l.size(); // 2

std::list<double> myReals{3.14159, M E, −1.7};

Philip Blakely (LSC) C++ Introduction 307 / 385

Lists

std::list ctd

Random-access is no longer allowed, since that would require
iterating through the list for n elements

The iterator approach seen earlier is still valid:

int f(const std::list<int>& a){
int sum = 0;
std::list<int>::const iterator aIter;
for(aIter = a.begin() ; aIter != a.end() ; ++aIter){
sum += *aIter;

}
return sum;
}

The similarity of this function to the std::vector version will become
important later.

Philip Blakely (LSC) C++ Introduction 308 / 385

Lists

Iterators overview

In general, iterators resemble a safer version of pointers:

Dereferencing gives an element in a container
Incrementing/decrementing gives the next/previous element in a
container

Iterators only apply to one specific container and, if that container
is altered, the iterator is (probably) invalid

For example, adding an element to a list will probably mean that
all previous iterators obtained from the list are now no longer
correct

Typedef can be used to save typing, as in:
typedef std::list<std::string>::const iterator ListIter;

Philip Blakely (LSC) C++ Introduction 309 / 385

Lists

auto

Even having to define typedefs can become tiresome.

We therefore have the auto keyword, which defines a variable to
be whatever type the right-hand side happens to be.

For example:

std::list<std::string> myList;
for(auto listIter = myList.begin() ; listIter != myList.end()

; ++listIter){
std::cout << *listIter << std::endl;

}

Philip Blakely (LSC) C++ Introduction 310 / 385

Lists

More auto and for-loops

The previous example can be shortened further:

std::list<std::string> myList;
for(auto listItem : myList){
std::cout << listItem << std::endl;

}

Modifiers can be used with auto:

std::vector<int> myVector;
for(auto& value : myVector){

value *= 2;
}

to double all members of myVector

Or:

std::vector<int> myVector;
for(const auto& value : myVector){

value *= 2; // Gives compile error
std::cout << value << std::endl; // OK

}

Philip Blakely (LSC) C++ Introduction 311 / 385

Lists

auto notes

auto can be used anywhere that the compiler can deduce the type
of the variable.

In practice, I suggest it is used only for short-lived variables or
ones where the developer doesn’t really need to know the full gory
details of the type.

In most cases, I find that knowing for certain what type a variable
is helps with code reading and debugging.

For example, where the variable type may affect accuracy
(float/double) or performance (std::list<int> versus
std::vector<int>)

In most cases, I ignore auto as I believe knowing what the
compiler is doing for you to be important for scientific computing.

Philip Blakely (LSC) C++ Introduction 312 / 385

Lists

Distance between iterators

It is possible to determine the distance between two iterators as:

std::list<int>::iterator first10 = std::find(a.begin(),
a.end(), 10);

size t posn = std::distance(a.begin(), first10)

However, for iterators other than those into containers where
random access is allowed (e.g. std::vector), this is implemented
using iter--, and is therefore slow O(N).

For random-access iterators, subtraction is overloaded, i.e.:

std::vector<int>::iterator first10 = std::find(a.begin(),
a.end(), 10);

size t posn = first10 − a.begin();

Subtraction is not overloaded for non-random-access so that you
don’t try to use an expensive operation by mistake.

Philip Blakely (LSC) C++ Introduction 313 / 385

Algorithms

Outline

37 Typedefs

38 Standard Template Library

39 Vectors

40 Iterators

41 Lists

42 Algorithms

43 Map

Philip Blakely (LSC) C++ Introduction 314 / 385

Algorithms

Algorithms

There are many operations that are applicable to many different
container types: find, equal, count, sort

These exist as generic algorithms within C++

#include <list>
#include <algorithm>
std::list<int> myList;
std::list<int>::iterator posnOf10 =

std::find(myList.begin(), myList.end(), 10);
if(posnOf10 != myList.end()){

*posnOf10 = 11;
}

The preceding replaces the first occurence of 10 (if any) in the list
by 11.

An invalid iterator is usually represented by myContainer.end(),
being one element past the end of the container

This algorithm can be applied to any suitable container,
e.g. vector, deque etc.

Philip Blakely (LSC) C++ Introduction 315 / 385

Algorithms

Algorithms ctd

The iterator points to a single element of the container.

The returned iterator does not contain any information about the
algorithm that produced it.

In order to find the next element equal to 10, the following is
required:

posnOf10 = std::find(++posnOf10, myList.end(), 10);

which advances posnOf10 to the next element, and calls another
find starting from that element.

Advancing posnOf10 off the end of the container makes it equal to
myList.end()

Philip Blakely (LSC) C++ Introduction 316 / 385

Algorithms

General algorithms

A sort algorithm could also be applied to a vector:

std::vector<unsigned int> a;
std::sort(a.begin(), a.end());

By default, this will use the < comparison.

To use a different comparison, you can supply a different function:

bool sortByLastDigit(unsigned int i, unsigned int j){
return ((i % 10) < (j % 10));

}

std::sort(a.begin(), a.end(), sortByLastDigit);

Many algorithms within the STL are customisable in this fashion.

Philip Blakely (LSC) C++ Introduction 317 / 385

Algorithms

Ordering on classes

If you want to apply find and sort algorithms to containers of your
own classes, you will need to define an ordering.

This only requires overloading operator<

class Rational{
bool operator<(const Rational& a)const{
return (num/(double)denom) < (a.num / (double)a.denom);

}
};

std::vector<Rational> a;
std::sort(a.begin(), a.end());

will sort the vector of Rationals correctly.

Philip Blakely (LSC) C++ Introduction 318 / 385

Algorithms

More algorithms

Counting the number of ’e’s in a string:

std::string gadsby;
size t numberEs = std::count(gadsby.begin(), gadsby.end(),

’e’);
if(numberEs != 0){

std::cout << "Wright did fail." << std::endl;
}

The preceding example works because a std::string is a
container of chars

Philip Blakely (LSC) C++ Introduction 319 / 385

Map

Outline

37 Typedefs

38 Standard Template Library

39 Vectors

40 Iterators

41 Lists

42 Algorithms

43 Map

Philip Blakely (LSC) C++ Introduction 320 / 385

Map

Map

A map is a mapping from one set of values to another.

The types of the key (from) and value (to) can be anything
(so long as the key-type has an ordering)

#include <map>
#include <string>
std::map<std::string, int> age;

age["Fred"] = 5;
age["Simon"] = 10;
std::cout << age["Fred"] << std::endl; // outputs 5
std::map<std::string, int>::const iterator tom =

age.find("Tom");
// Now tom == age.end()
tom = age.find("Simon");
std::cout << tom−>second << std::endl; // Outputs 10

This works because there is an ordering on std::string

The elements of a std::map are ordered by their key.

This only usually matters when using iterators of maps.

Philip Blakely (LSC) C++ Introduction 321 / 385

Map

Map

A map can be initialized using an initializer list:

std::map<int,double> b{ {1, M PI}, {2, M E}, {6, 9.80665} };

which is using uniform initialization for individual std::pair elements,
and an initializer list overall.

Philip Blakely (LSC) C++ Introduction 322 / 385

Map

Map ctd

Note that element access for a map is not a constant member fn:

std::map<std::string, int> myMap;
int a = myMap["Fred"];

will result in a being undefined, and myMap has a new element Fred

In general, the element is created using the default constructor,
but for an int this does not do anything.

If you wish to test whether a particular value is in the map, use:

if(myMap.find("Fred") != myMap.end())

or

if(myMap.count("Fred") == 1)

If you have a const std::map<> then you are prevented from
using [] access on it by const-ness.

Philip Blakely (LSC) C++ Introduction 323 / 385

Map

Unordered map

An std::unordered map uses a hash function to map a Key type
to a size t value.

Items with identical hashes are placed into a single bucket
(although different keys are still kept distinct).

This results in (average) constant time complexity for search,
removal, and insertion of items.

(as compared to a std::map having logarithmic complexity for
these).

Philip Blakely (LSC) C++ Introduction 324 / 385

Map

More container types

Other container types in C++ are:

deque: Double-ended queue: Allows efficient push front and
push back, and efficient subscripting
set: Set of values (similar to map where the value type is irrelevant)
multimap: Multi-valued map, i.e. mapping from a single key to a
set of values

Philip Blakely (LSC) C++ Introduction 325 / 385

