Part X

C++ Standard Template Library

Philip Blakely (LSC) C++ Introduction 286 /385

Typedef

Outline

€ Typedefs

Philip Blakely (LSC) C++ Introduction 287 /385

Typedef

o Within C++ type-names can get very long
@ We can use typedef to create a shorthand

typedef std::vector<double> RealVec;
RealVec a; // same as std::vector<double> a

o Essentially creating an alias for other types

@ This is a C++ construct, not done by preprocessor

Philip Blakely (LSC) C++ Introduction 288 /385

Typedef

Typedefs in classes

@ You can define typedefs within a class as well:

class MyVector{
public:

typedef double value_type;
private:

doublex data;

¥
@ You can then chain typedefs together as:

typedef MyVector V;
VvV v;
V::value_type a = v[0];

@ The typedef does not create a new type, merely an alias
(shorthand).

Philip Blakely (LSC) C++ Introduction 289 /385

Typedef

More typedefs

@ Another reason for using typedef is for maintainability

@ Suppose you had a code in which the number of widget types was
known to be less than 255:

@ You could use char to identify a widget.

o If the number of widget types increased to 300, would need to
replace all instances of char by int, unless you had:

typedef char WidgetId;

in which case changing it to
typedef int WidgetId;

would work.
This also leads to more readable code: Which is more readable:
void sellWidgets (int, int);

or
void sellWidgets (WidgetId, int);

Philip Blakely (LSC) C++ Introduction 290 /385

Outline

€ Standard Template Library

Philip Blakely (LSC) C++ Introduction 291 /385

@ The Standard Template Library is one of the most important
parts of C++

@ The principle of this is to implement support for generic
data-structures and algorithms, which can be applied to any
(sensible) data-type

@ Various functions have guaranteed computational complexity.

e Examples are finding, sorting, summing (accumulating), and
iterating

Philip Blakely (LSC) C++ Introduction 292 /385

Data-structures

Firstly, we need to cover some standard containers:
pair, tuple, vector, map, list, unordered_map
These are standard constructs from computer science

Each of these (and some others) is present as a generic form in the
STL.

o We have already seen the fixed-size std: :array and hints of
std::vector.

Philip Blakely (LSC) C++ Introduction 293 /385

@ A std::pair is a pair of values of any type:

std::pair<int, double> a (42, 3.1415926535);
a = std::make_pair (3, 2.71828182843);

int t = a.first;

double e = a.second;

Philip Blakely (LSC) C++ Introduction

294 /385

tuple

@ A std::tuple is a set of values of any type:

std::tuple<int, double, std::string> a(42, 3.1415926535,
"Hello!"™);
int t = std::get<0>(a);
@ ... and can be used to return multiple values from a function:

std::tuple<int, bool> findElt () {
return std::make_tuple (42, true);

int val; bool found;
std::tie(val, found) = findElt ();

Philip Blakely (LSC) C++ Introduction 295 /385

Vectors

Outline

€@ Vectors

Philip Blakely (LSC) C++ Introduction 296 /385

Vectors

vector

@ A vector is an ordered set of items of the same type.
o It allows for random access to the elements in constant time

#include <vector>
std::vector<int> a;
a.resize(5);

al0] = 3;
al6] = 4; // Will cause undefined behaviour
for(size.t i=0 ; i < a.size() ; i++){
alil = i;
}

@ So a is a vector of integers and knows about its own size

@ It can be resized at will (unlike basic arrays)

o If enlarged, it may result in copying of data to a new region of
memory

o It handles memory allocation and freeing automatically, and is
destroyed when it goes out of scope

@ The object is stored on the stack, but its data is (probably) stored
on the heap.

Philip Blakely (LSC) C++ Introduction 297 /385

Vectors

Vector constructors

@ The easiest way to initialize a small vector is to use an initializer
list:
std::vector<int> avec{l,4,9,16};

@ You can also construct a std: :vector by copying from an array:
std::array<int,4> a = {1,4,9,16};
std::vector<int> aVec (&al[0], &al4]);

Note that a[4] is one after the end of the array. The copy is done
up to, but not including, this element, so a[4] is never read.

@ Note that sizeof does not take into account the run-time size of a
vector:

std::vector<int> v (10);
std::cout << sizeof (v) << std::endl;

outputs 24 on my computer, but may be wildly different on yours.

@ Use v.size() instead.

Philip Blakely (LSC) C++ Introduction 298 /385

Vectors

Vector assignments

o Complete assignments can be made later to a vector:
std::vector<int> v;
std::array<int,4> a = {1,4,9,16};
v.assign(a, &al4]);

@ Or to set v to be of size 4 all with value 42:

v.assign (4, 42);

@ A vector is guaranteed to have its data held contiguously in
memory (i.e. a[N] is followed directly by a[N+1] in memory).

Other containers do not have this property.

The following is therefore valid:

std::vector<int> v (10);
int+ vStart = &v[0];
int v5 = x(vStart + 5); // same as v/[5]

Philip Blakely (LSC) C++ Introduction 299 /385

Vectors

Vector operations

std::vector<int> aj;

a.at (i) = 5;// Same as a[i] but with bounds checking
bool isEmpty = a.empty();

a.clear(); // Clears contents of a

a.push_back (5); // Inserts "5" as extra element at end
int first = a.front(); // Gets first element of a

int last = a.back(); // Gets last element of a

Philip Blakely (LSC) C++ Introduction 300 /385

Vectors

Type conversion of containers

@ There is no implicit conversion between containers of different
types.
o For example:
std::vector<int> a(5, 1); // Length 5, all elts=1
std::vector<double> b = a; // Compile—time failure

o Even though there is a known type conversion between int and
double, this does not translate into a type conversion between
containers of these types.

o If you wish to do the conversion, you have to do it element by
element, using a loop.

Philip Blakely (LSC) C++ Introduction 301 /385

Iterators

Outline

@ Iterators

Philip Blakely (LSC) C++ Introduction 302 /385

Iterators

Iterators

@ An iterator is a type that points to a single element of a data
structure, and allows iteration over that structure

@ It dereferences to an element of the data-structure

std::vector<int> aj;
std::vector<int>::iterator vectorIter;

for(vectorIter = a.begin() ; vectorIter != a.end() ;
++vectorIter){
(xvectorIter) = 1;

o This sets all elements of the vector a to be 1.

@ Note that a.end() is one element past the end of a, so that !=is
the correct test to use

@ There is usually no ordering on iterators, so != is used, rather
than <

@ The reasons for this slightly verbose notation will become clearer
later.

Philip Blakely (LSC) C++ Introduction 303 /385

Iterators

Const-iterators

o It is also possible to have iterators over constant structures:

int f (const std::vector<int>& a){

int sum = 0;
std::vector<int>::const_iterator alter;
for(alter = a.begin() ; alter != a.end() ; ++alter){
sum += xalter;
return sum;

}

o It is not possible to alter an object through a const_iterator.

o It is not possible to take an iterator from a constant object.

Philip Blakely (LSC) C++ Introduction 304 / 385

Outline

@ Lists

Philip Blakely (LSC) C++ Introduction 305 /385

Linked List

@ A linked-list is an ordered sequence of elements of the same type
where each element has a pointer to its immediate neighbouring

element(s)
struct ListElt{ list
int value;
ListEltx prev;
ListEltx next; prev
bi next
a0

~prev
next

al

~prev
next

a2

@ An element can be inserted anywhere in the list by changing only
its neighbouring elements, i.e. their next and prev pointers.

@ This is an advantage over a vector where insertion requires all the
elements after it to be moved in memory.

Philip Blakely (LSC) C++ Introduction

306 /385

std::list

#include <list>

std::list<int> 1;

std::cout << l.size(); // 0

1l.push_back (5);

1.push_front (10); // Not possible with a vector
std::cout << 1l.front(); // 10

std::cout << l.size(); // 2

std::list<double> myReals{3.14159, M.E, —1.7};

Philip Blakely (LSC) C++ Introduction 307 /385

std::list ctd

@ Random-access is no longer allowed, since that would require
iterating through the list for n elements

@ The iterator approach seen earlier is still valid:

int f(const std::list<int>& a){

int sum = 0;
std::list<int>::const_iterator alter;

for(alter = a.begin() ; alter != a.end() ; ++alter){
sum += xalter;
return sum;

}

The similarity of this function to the std: :vector version will become

important later.

Philip Blakely (LSC) C++ Introduction 308 /385

Iterators overview

In general, iterators resemble a safer version of pointers:
e Dereferencing gives an element in a container
o Incrementing/decrementing gives the next/previous element in a
container

Iterators only apply to one specific container and, if that container
is altered, the iterator is (probably) invalid

For example, adding an element to a list will probably mean that
all previous iterators obtained from the list are now no longer
correct

Typedef can be used to save typing, as in:
typedef std::list<std::string>::const_iterator ListIter;

Philip Blakely (LSC) C++ Introduction 309 /385

@ Even having to define typedefs can become tiresome.

@ We therefore have the auto keyword, which defines a variable to
be whatever type the right-hand side happens to be.

o For example:
std::list<std::string> myList;
for(auto listIter = myList.begin() ; listIter != myList.enc

; ++listIter){
std::cout << xlistIter << std::endl;

}

Philip Blakely (LSC) C++ Introduction 310 /385

More auto and for-loops

@ The previous example can be shortened further:

std::list<std::string> myList;
for (auto listItem : myList){
std::cout << listItem << std::endl;

}

@ Modifiers can be used with auto:

std::vector<int> myVector;
for(auto& value : myVector){
value *= 2;

}
to double all members of myVector

e Or:

std::vector<int> myVector;

for (const auto& value : myVector) {
value %= 2; // Gives compile error
std::cout << value << std::endl; // OK

}

Philip Blakely (LSC) C++ Introduction 311 /385

auto notes

auto can be used anywhere that the compiler can deduce the type
of the variable.

In practice, I suggest it is used only for short-lived variables or
ones where the developer doesn’t really need to know the full gory
details of the type.

@ In most cases, I find that knowing for certain what type a variable
is helps with code reading and debugging.

For example, where the variable type may affect accuracy
(float/double) or performance (std::1list<int> versus
std: :vector<int>)

In most cases, I ignore auto as I believe knowing what the
compiler is doing for you to be important for scientific computing.

Philip Blakely (LSC) C++ Introduction 312 /385

Lists

Distance between iterators

It is possible to determine the distance between two iterators as:

std::list<int>::iterator firstlO0 = std::find(a.begin(),
a.end (), 10);
size_t posn = std::distance(a.begin(), firstlO0)

However, for iterators other than those into containers where
random access is allowed (e.g. std: :vector), this is implemented
using iter--, and is therefore slow O(N).

For random-access iterators, subtraction is overloaded, i.e.:

std::vector<int>::iterator firstl0 = std::find(a.begin(),
a.end(), 10);
size_t posn = firstl0 — a.begin();

Subtraction is not overloaded for non-random-access so that you
don’t try to use an expensive operation by mistake.

Philip Blakely (LSC) C++ Introduction 313 /385

Algorithms

Outline

@ Algorithms

Philip Blakely (LSC) C++ Introduction 314 /385

Algorithms

Algorithms

@ There are many operations that are applicable to many different
container types: find, equal, count, sort

@ These exist as generic algorithms within C++

#include <list>
#include <algorithm>
std::list<int> myList;
std::list<int>::iterator posnOfl0 =
std::find (myList.begin (), myList.end(), 10);
if (posnOfl0 != myList.end()){
*posnOfl0 = 11;
}

@ The preceding replaces the first occurence of 10 (if any) in the list
by 11.

@ An invalid iterator is usually represented by myContainer.end(),
being one element past the end of the container

@ This algorithm can be applied to any suitable container,
e.g. vector, deque etc.

Philip Blakely (LSC) C++ Introduction 315 /385

Algorithms

Algorithms ctd

@ The iterator points to a single element of the container.

@ The returned iterator does not contain any information about the
algorithm that produced it.

@ In order to find the next element equal to 10, the following is
required:
posnOfl0 = std::find (++posnOfl0, myList.end(), 10);

which advances posn0f10 to the next element, and calls another
find starting from that element.

@ Advancing posn0£10 off the end of the container makes it equal to
myList.end()

Philip Blakely (LSC) C++ Introduction 316 /385

Algorithms

General algorithms

A sort algorithm could also be applied to a vector:

std::vector<unsigned int> a;
std::sort (a.begin(), a.end());

By default, this will use the < comparison.
@ To use a different comparison, you can supply a different function:

bool sortByLastDigit (unsigned int i, unsigned int 3j){
return ((1 % 10) < (3 % 10));
}

std::sort (a.begin(), a.end(), sortByLastDigit);

Many algorithms within the STL are customisable in this fashion.

Philip Blakely (LSC) C++ Introduction 317 /385

Algorithms

Ordering on classes

o If you want to apply find and sort algorithms to containers of your
own classes, you will need to define an ordering.
o This only requires overloading operator<

class Rational{
bool operator<(const Rationalé& a)const{
return (num/ (double)denom) < (a.num / (double)a.denom);

}
}i
std: :vector<Rational> a;
std::sort (a.begin(), a.end());

will sort the vector of Rationals correctly.

Philip Blakely (LSC) C++ Introduction 318 /385

Algorithms

More algorithms

Counting the number of ’e’s in a string:

std::string gadsby;

size_t numberEs = std::count (gadsby.begin(), gadsby.end(),
"e’);

if(numberEs != 0){
std::cout << "Wright did fail." << std::endl;

}

@ The preceding example works because a std::stringis a
container of chars

Philip Blakely (LSC) C++ Introduction 319 /385

Outline

® Map

Philip Blakely (LSC) C++ Introduction

Map

@ A map is a mapping from one set of values to another.

@ The types of the key (from) and value (to) can be anything
(so long as the key-type has an ordering)

#include <map>
#include <string>
std::map<std::string, int> age;

age["Fred"] = 5;

age["Simon"] = 10;

std::cout << age["Fred"] << std::endl; // outputs 5

std::map<std::string, int>::const_iterator tom =
age.find ("Tom") ;

// Now tom == age.end()

tom = age.find("Simon");

std::cout << tom—>second << std::endl; // Outputs 10

@ This works because there is an ordering on std: :string
@ The elements of a std: :map are ordered by their key.

@ This only usually matters when using iterators of maps.

Philip Blakely (LSC) C++ Introduction 321 /385

A map can be initialized using an initializer list:
std::map<int,double> b{ {1, M.PI}, {2, M.E}, {6, 9.80665} };

which is using uniform initialization for individual std: :pair elements,
and an initializer list overall.

Philip Blakely (LSC) C++ Introduction

Map ctd

@ Note that element access for a map is not a constant member fn:

std::map<std::string, int> myMap;
int a = myMap["Fred"];

will result in a being undefined, and myMap has a new element Fred

@ In general, the element is created using the default constructor,
but for an int this does not do anything.

o If you wish to test whether a particular value is in the map, use:
if(myMap.find("Fred") != myMap.end())
or

if (myMap.count ("Fred") == 1)

o If you have a const std::map<> then you are prevented from
using [] access on it by const-ness.

Philip Blakely (LSC) C++ Introduction 323 /385

Unordered map

@ An std::unordered map uses a hash function to map a Key type
to a size_t value.

o Items with identical hashes are placed into a single bucket
(although different keys are still kept distinct).

e This results in (average) constant time complexity for search,
removal, and insertion of items.

@ (as compared to a std: :map having logarithmic complexity for
these).

Philip Blakely (LSC) C++ Introduction 324 /385

More container types

@ Other container types in C++ are:
e deque: Double-ended queue: Allows efficient push_front and
push_back, and efficient subscripting
e set: Set of values (similar to map where the value type is irrelevant)
e multimap: Multi-valued map, i.e. mapping from a single key to a
set of values

Philip Blakely (LSC) C++ Introduction 325 /385

