
Part XI

Algorithms and Templates

Philip Blakely (LSC) C++ Introduction 326 / 385



STL Algorithms

Outline

44 STL Algorithms

45 Templates

46 Summing an array

47 Templated classes

Philip Blakely (LSC) C++ Introduction 327 / 385



STL Algorithms

Computational Complexity

Various operations have computational complexity guaranteed by
the standard

These are usually upper-bounds on the maximum complexity
required for that operation

For example, a sort algorithm on a vector can be carried out in
approximately N log(N) operations.

This is guaranteed by the standard, so any C++ implementation
must implement algorithms with at most this complexity

However, implementations may vary as to how efficiently they
carry out the actual sort.

Philip Blakely (LSC) C++ Introduction 328 / 385



STL Algorithms

More algorithms

The STL has various sorting algorithms which can act on suitable
containers:

std::vector<int> a(4);
a[0] = 1; a[1] = 3; a[2] = 4; a[3] = −9;
std::sort(myVector.begin(), myVector.end());
// Now a contains (−9,1,3,4)

would sort the whole of myVector.

This takes on average N logN comparisons, and in the (rare)
worst case: N2

Philip Blakely (LSC) C++ Introduction 329 / 385



STL Algorithms

Sorting ctd

If you want guaranteed complexity N logN logN then use
stable sort

This also preserves the order of elements that compare to be equal.

This may appear irrelevant but if your elements are
std::pair<int, double> and you order based on the first
integer, then the associated double may not be the same for
identical integers.

Philip Blakely (LSC) C++ Introduction 330 / 385



STL Algorithms

String algorithms

Since strings are also containers (of chars), many algorithms can
be applied to these as well

std::string a("The quick brown fox jumped swiftly
over the lazy dog.");

std::sort(a.begin(), a.end());
std::cout << a << std::endl;

will output

.Tabcddeeeeffghhiijkllmnoooopqrrsttuuvwwxyyz

Philip Blakely (LSC) C++ Introduction 331 / 385



STL Algorithms

Member algorithms

Some algorithms are implemented as member functions of their
containers:

std::list<int> a;
a.remove(10);
a.sort();

would remove all 10s from the list, and then sort it.

This is a member function because the sort operation for a list

can be written in terms of modifying the list elements’
next/previous pointers, rather than copying/moving the elements
themselves.

The std::sort function requires random-access iterators, which a
list does not have.

Philip Blakely (LSC) C++ Introduction 332 / 385



STL Algorithms

Copying algorithms

You can copy from one container to another:

std::vector<int> a(9);
std::vector<double> b(9);
std::copy(a.begin(), a.end(), b.begin());

which assumes that b has at least as many elements as a

In order to copy part of a container, you could use:

std::vector<int>::iterator first10 = std::find(a.begin(),
a.end(), 10);

std::copy(a.begin(), first10, b.begin());

would copy all elements up to (but not including) the first
occurence of 10 from a into b

Philip Blakely (LSC) C++ Introduction 333 / 385



STL Algorithms

Transformation algorithm

You may wish to create a new container by applying a function to
another one:

std::vector<int> a;
std::vector<double> b;
std::transform(a.begin(), a.end(), b.begin(), sqrt);

This assumes that b is at least as big as a.

Philip Blakely (LSC) C++ Introduction 334 / 385



STL Algorithms

find if and predicate

We can use the find if algorithm with a function:

bool lessThan10(int x){ return (x < 10); }
aIter = std::find if(a.begin(), a.end(), lessThan10);

will return an iterator pointing to the first element less than 10.

However, this is wasteful in writing functions with different names.

C++ allows us to define a function inline:

aIter = std::find if(a.begin(), a.end(),
[](int x){return (x < 10);} );

where the [] syntax indicates a “lambda” function.

The lambda can also pick up variables from the current scope:

int valueToFind = getIntegerFromUser();
aIter = std::find if(a.begin(), a.end(),

[valueToFind](int x){return (x < valueToFind);});

Variables that need to be captured by the lambda are put in the
square brackets.

Philip Blakely (LSC) C++ Introduction 335 / 385



STL Algorithms

Lambda functions ctd

We could also use a different algorithm:

std::transform(a.begin(), a.end(), b.begin(),
[cutoff](int x){return (x < cutoff) ? x : 0;}
);

which copies a into b, except that it replaces values larger than
cutoff with zeros.

Or:

auto sortUnit = [](int a, int b){return (a % 10 < b % 10);};
std::sort(a.begin(), a.end(), sortUnit);

to sort a according to the units-digits of its elements.

In each case, the arguments and return-type of the lambda must
be as expected by the algorithm in which it is being used.

Philip Blakely (LSC) C++ Introduction 336 / 385



STL Algorithms

Lambda functions ctd

In some cases lambda functions can make the code more compact
and easy to read.

In some cases they can make it substantially more complicated to
read or possibly less efficient.

A few extra syntax notes:
The capture list can be given as

[&]: all variables captured by reference, or
[&, a, b]: captures all local variables other than a and b by
reference, or
[=]: all variables captured by value, or
[=, &a, &b]: captures all local variables by value except for a and
b which are captured by reference.

If there are no parameters to pass to the lambda function, the ()

can be omitted.
Parameter values are captured at the point where the lambda
function is created.

Philip Blakely (LSC) C++ Introduction 337 / 385



STL Algorithms

Yet more algorithms

Other useful algorithms available in C++ include:

count if: count all sequence elements that satisfy a condition
equal: Compare two sequences
merge: Merge sequences
max element: Find maximum element in a sequence

If you need to use these, then any decent C++ reference manual
should give you the relevant syntax

There are many more algorithms than I have listed here. However,
they all apply to a wide range of containers, and are fully
user-customisable (e.g. sorting criterion).

Philip Blakely (LSC) C++ Introduction 338 / 385



Templates

Outline

44 STL Algorithms

45 Templates

46 Summing an array

47 Templated classes

Philip Blakely (LSC) C++ Introduction 339 / 385



Templates

Templates

You may have wondered: Why the Standard Template Library?

Many of the algorithms can be applied to vectors, lists, maps

As long as a container has certain properties, then a generic
algorithm can be applied to it

We can write a general piece of code that applies to any container,
and just needs the actual container type to be specified.

This is essentially what a C++ template is.

Philip Blakely (LSC) C++ Introduction 340 / 385



Sum

Outline

44 STL Algorithms

45 Templates

46 Summing an array

47 Templated classes

Philip Blakely (LSC) C++ Introduction 341 / 385



Sum

Description of problem

Suppose we want to sum all the elements of a std::vector

(Ignore the fact that this can be done using a built-in algorithm)

We want to start with zero, and add successive elements to it

We should not simply cast to a specific default type, because
different types will behave differently with regard to overflow,
precision, etc.

We could write a separate version for every type we want to sum,
but this is error-prone

We could use macros (see Practical 6), but we would still need to
add an extra line for every type we wanted to use (also, macros are
evil)

Philip Blakely (LSC) C++ Introduction 342 / 385



Sum

Template code
template<typename T>
T sumVector(const std::vector<T>& v){
T sum = 0;
for(size t i=0 ; i < v.size() ; i++){
sum += v[i];

}
return sum;

}

std::vector<int> a;
int s = sumVector(a);

Whenever a templated-function is used, the compiler checks the
types of the parameters and then matches these to the templated
definition
It tries to deduce the template-parameters (T in the above)
When the parameters have been deduced from the calling syntax,
a version of the function is instantiated using these parameters.
The generated function is then compiled, and stored in the current
object file being generated
Philip Blakely (LSC) C++ Introduction 343 / 385



Sum

Specialisation of templated function

For floating-point values, the order in which we sum them is
important, so we may wish to use a fully specialised version

template<>
double sumVector<double>(const std::vector<double>& v){
// Use Kahan summation to reduce round−off error
return sum;

}

Now when we pass a std::vector<double> to sumVector, this
version of the function will be used instead of the generic form on
the previous slide.

The template<> construct says that this is a templated function,
but that there are no free template parameters.

The sumVector<double> says that this is sumVector with the
template parameter T = double.

Philip Blakely (LSC) C++ Introduction 344 / 385



Sum

Template parameters

In the previous code, the template-parameter T was a typename

Template-parameters can also be:

Integral types (i.e. int, char, enums, etc.)
Function-pointers
Templated typenames (advanced users only)

They cannot be:

Floating point values
Strings

Philip Blakely (LSC) C++ Introduction 345 / 385



Sum

Integer as template parameter

Very simple example:

template<int V>
int addInt(int a){
return a + V;

}

This could be of use when using STL algorithms that require a
function of the form int f(int)

std::transform(a.begin(), a.end(), b.begin(), addInt<5>);

to add 5 to every element of a and put it into b.

Otherwise, you might have to implement separate add4, add5
functions.

(Of course, a simpler approach would be to use a lambda function,
although perhaps the compiler might not be able to optimize it as
well.)

Philip Blakely (LSC) C++ Introduction 346 / 385



Templated classes

Outline

44 STL Algorithms

45 Templates

46 Summing an array

47 Templated classes

Philip Blakely (LSC) C++ Introduction 347 / 385



Templated classes

Templated classes

It is also possible to template classes

template<typename T>
class MyArray{
public:
MyArray(unsigned int);
T operator[](size t)const;

private:
T* data;

};
template<typename T>
MyArray<T>::MyArray(unsigned int s){

data = new T[s];
}
template<typename T>
T MyArray<T>::operator[](size t i)const{
return data[i];

};

Within a class definition, or a member function definition, the
class-name always refers to the version with the current template
arguments, unless otherwise specified.

Philip Blakely (LSC) C++ Introduction 348 / 385



Templated classes

Template instantiation

For most uses of templates, you will always need to make sure that
a definition of a templated class or function is available within the
current source-file being processed.

Thus, when a compiler decides that it needs a particular version of
a class/function with particular template arguments, it can
instantiate one immediately.

This ensures that all necessary code is compiled as necessary.

Therefore, most template definitions should be put into header .H
files, and included as necessary.

If a templated definition were only present in a .C file, but used in
another source file, the compiler would not be able to see the
definition to create the correct version.

Philip Blakely (LSC) C++ Introduction 349 / 385



Templated classes

Class template default parameters

Class templates are allowed to have default parameters:

template<int SIZE, typename T = double>
class realVector{
private:

std::array<T,SIZE> data;
};

realVector<10> v;
realVector<10, float> vSingle;

As with default function parameters, once one is specified, all
subsequent parameters must also be specified.

Templated functions are not allowed to have default template
parameters as this would end up conflicting with overloading.

Philip Blakely (LSC) C++ Introduction 350 / 385



Templated classes

Partial specialisation

It is also permitted to define partial specialisations of classes (not
functions), where some template parameters are specified:

template<typename X, typename Y>
class A{ /* Code */ };

template<typename Z>
class A<Z,Z>{};

defines a generic form for a class with two template parameters,
but specialises for the case where the template parameters are the
same

It is not necessary to make different specialisations of the class
similar in any way whatsoever, but you would nearly always do so
for reasons of clarity.

Philip Blakely (LSC) C++ Introduction 351 / 385



Templated classes

Templated members of templated classes

If you have a templated class, you may wish its member functions
also to depend on different template parameters:

template<int SIZE, typename T = double>
class realVector{
template<typename S>
realVector operator*(const S&)const;

};

template<int SIZE, typename T>
template<typename S>
realVector<SIZE,T>
realVector<SIZE,T>::operator*(const S& s)const{

// Create new vector multiplied by s
}

Philip Blakely (LSC) C++ Introduction 352 / 385



Templated classes

Compile-time computation

Templates can also be used to carry out computations at
compile-time.

You will see an example of this in the practicals.

This relies on the fact that in

template<int N>
struct Double{
static const int result = 2*N;

};

the value of result can be computed at compile-time.

Philip Blakely (LSC) C++ Introduction 353 / 385



Templated classes

Advanced template constructs

It is possible to do some very advanced compile-time computations
with templates

These are usually used to allow the compiler to make
optimizations which it would have not otherwise had sufficient
information to make.

For example, the Boost libraries have a templated function
boost::math::pow<5>(a); to compute the fifth power of a.

The templating allows the compiler to see this as (a*a*a*a*a) or
maybe even ( (a*a) * (a*a) * a )

which may allow it to make optimizations that would not have
been possible with a function pow(a, 5).

Philip Blakely (LSC) C++ Introduction 354 / 385


