
Part XII

Expression templates and more programming

comments

Philip Blakely (LSC) C++ Introduction 355 / 385

Expression templates

Outline

48 Expression templates

49 Namespaces

50 Exceptions

51 mutable

52 Programming practice and style

Philip Blakely (LSC) C++ Introduction 356 / 385

Expression templates

Expression templates - overview

To demonstrate the power of templates within C++, we will look
at an advanced example of their use

Very little in the way of complete code will be given. For more
details, see C++ Templates (Vandevoorde and Josuttis)

Philip Blakely (LSC) C++ Introduction 357 / 385

Expression templates

Array operations

Within C++ it is fairly easy to define your own vector class that
allows for arithmetic operations:

Vector a(10), b(10), c(10);
/* Fill a and b with suitable data */
c = 2.3*a + 4.5*b + a*b; // Assume elt−wise multiplication

However, the preceding is not efficient. It effectively does:

Vector tmp1(10) = 2.3*a;
Vector tmp2(10) = 4.5*b;
Vector tmp3(10) = tmp1 + tmp2;
Vector tmp4(10) = a*b;
Vector tmp5(10) = tmp3 + tmp4;
c = tmp5;

Philip Blakely (LSC) C++ Introduction 358 / 385

Expression templates

What do we want?

Ideally, the line

c = 2.3*a + 4.5*b + a*b;

should be replaced by something equivalent to

for(size t i=0 ; i < a.size() ; i++){
c[i] = 2.3*a[i] + 4.5*b[i] + a[i]*b[i];

}

This can be arranged if we use expression templates, which
effectively encode an entire expression as a template parameter.

Philip Blakely (LSC) C++ Introduction 359 / 385

Expression templates

Generic Vector

We create a vector class

template<typename T, int SIZE,
typename Internal=SimpleVector<T,SIZE> >

class Vector{
public:

T operator[](size t i){return data[i];}
const Internal& internalType()const{return data;}

private:
Internal data;

};

whose internal storage is generic, but is a simple C-array wrapper
by default.

The internal type must have an operator[] but can otherwise be
anything.

Philip Blakely (LSC) C++ Introduction 360 / 385

Expression templates

Adding two Vectors

If we want to add two Vectors, we can make the result another
class:

template<typename T, typename Op1, typename Op2>
class VectorSum{
public:

VectorSum(Op1 a, Op2 b) : op1(a), op2(b) {}
T operator[](size t i)const{
return op1[i] + op2[i];

}
private:
const Op1& op1;
const Op2& op2;

};

Philip Blakely (LSC) C++ Introduction 361 / 385

Expression templates

Overloading the + operator

template<typename T, int SIZE, typename X, typename Y>
Vector<T,SIZE,VectorSum<T,X,Y> > operator+(

const Vector<T,SIZE,X>& a,
const Vector<T,SIZE,Y>& b){

return Vector<T,SIZE,VectorSum<T,X,Y> >
(VectorSum<T,X,Y>(a.internalType(), b.internalType()));

}

Philip Blakely (LSC) C++ Introduction 362 / 385

Expression templates

Assignment constructor for Vector

Now we make sure that a Vector can be assigned from any Vector type:

template<int SIZE, typename T, typename InternalType>
template<typename S>
Vector<SIZE,T,InternalType>&

Vector<SIZE,T,InternalType>::operator=(const
Vector<SIZE,T,S>& s){

for(int i=0 ; i < SIZE ; i++){
data[i] = s[i];

}
}

Philip Blakely (LSC) C++ Introduction 363 / 385

Expression templates

And it all works...

Vector<3,double> a,b,c,d,e;
a = b + c + d + e;

will not allocate any temporaries, and will be nearly as efficient as
plain C code.

Philip Blakely (LSC) C++ Introduction 364 / 385

Expression templates

Doing it properly...

We also need to overload all other operators - * / += -= etc.

Need to allow for scalars as appropriate, possibly creating a trivial
scalar wrapper that behaves like a Vector.

Overload operator* for all combinations of Vector and Scalar.

Can even overload sin, cos etc.

We now get a Vector class that can evaluate expressions such as:

Vector<3,double> a = sin(b) + 6.7*c + d/9 − pow(e,2);

as efficiently as if you’d written an explicit loop over all elements.

Philip Blakely (LSC) C++ Introduction 365 / 385

Namespaces

Outline

48 Expression templates

49 Namespaces

50 Exceptions

51 mutable

52 Programming practice and style

Philip Blakely (LSC) C++ Introduction 366 / 385

Namespaces

Namespaces

A namespace is just another way of lumping a set of
functions/classes together under a general heading

The only one you’ve seen so far is std::

External libraries tend to use namespaces to separate their
functions from other libraries/users

namespace MyMatrixLibrary{
Matrix transpose(const Matrix&);

}

This distinguishes this transpose function from others since you
now have to refer to it as
MyMatrixLibrary::transpose.

Philip Blakely (LSC) C++ Introduction 367 / 385

Namespaces

Importing namespaces

It is possible to import a namespace into the global namespace:

using namespace MyMatrixLibrary;

Now, the function can be referred to as transpose

Since this could cause clashes of functions/classes, I recommend
not using using

This extends to never using using namespace std;

which also reminds you that these functions/classes are contained
in std::

It also saves clashes if you want to call a variable vector for
example...

Philip Blakely (LSC) C++ Introduction 368 / 385

Exceptions

Outline

48 Expression templates

49 Namespaces

50 Exceptions

51 mutable

52 Programming practice and style

Philip Blakely (LSC) C++ Introduction 369 / 385

Exceptions

Exceptions

In C and Fortran, indicating that an error occured within a
function often requires an error code:
int invertMatrix(const Matrix& A, Matrix& AT);

or even setting a global variable err

We would prefer a basic call to look like:
Matrix invertMatrix(const Matrix& A);

The approach used in C++ involves exceptions:
The exception is a simple struct/class
It can contain information about the type of error if necessary.
The principle behind these is that the calling function has more
information about the situation than the inversion function, and
can therefore deal more appropriately with it.
The exception will propagate up the call-chain until it finds a
matching catch()

NOTE: C++ exceptions are NOT the same as floating-point
exceptions.
Philip Blakely (LSC) C++ Introduction 370 / 385

Exceptions

Exception example

struct SingularMatrix{
};

Matrix invertMatrix(const Matrix& a){
if(det(a) == 0){
throw SingularMatrix();

}
}
int main(void){
try{

a = invertMatrix(eqnSystem);
}
catch(SingularMatrix& e){

std::cout << "eqnSystem is singular" << std::endl;
}
}

Philip Blakely (LSC) C++ Introduction 371 / 385

Exceptions

Standard exceptions

Various exceptions can be thrown by C++ operators and STL
library functions

For example, when out of memory:

try{
int* a = new int[10000];

}
catch(std::bad alloc){
std::cout << "Out of memory" << std::endl;

}

If uncaught, the exception will propagate to the top of the stack
and cause the code to abort

The C++ run-time may give a useful indication of the exception.

Philip Blakely (LSC) C++ Introduction 372 / 385

Exceptions

More exceptions

An exception is caught by the first catch construct that matches
its type.
struct MatrixError {};
struct SingularMatrix : MatrixError{};

try{
a = invertLargeMatrix(b);

}
catch(std::bad alloc){
// Do something

}
catch(MatrixError& e){

// Some matrix error occured
}

Even if the specialised SingularMatrix is thrown, it still matches
the general MatrixError type due to inheritance.
Exceptions should only be used to deal with exceptional
behaviour; they should not be part of the expected execution of
your program.
Philip Blakely (LSC) C++ Introduction 373 / 385

mutable

Outline

48 Expression templates

49 Namespaces

50 Exceptions

51 mutable

52 Programming practice and style

Philip Blakely (LSC) C++ Introduction 374 / 385

mutable

Who needs const?

Clearly, const is useful, mostly for protecting the programmer
from themselves.

However, sometimes it can be too strict. For example:

class calcFn{
public:
double doCalc(double x)const;

private:
double calcData;

};

where our expensive calculation has associated constant data.

If we want to introduce a cache for the last value of x to be used,
and the result for that x, then what can we do?

We would presumably need to set the values of lastX and
lastResult in doCalc(x), but it’s a const function...

Philip Blakely (LSC) C++ Introduction 375 / 385

mutable

Slightly hacky approach...

One possibility would be a pointer to a cache class:

class calcFn{
CacheClass* myCache;
// Other members here

};

This works because a const member function only guarantees that
myCache does not change, but we can still change the value of the
object pointed to by myCache.

Philip Blakely (LSC) C++ Introduction 376 / 385

mutable

mutable

The answer is to use mutable, which allows values to change, even
in a const member function:

class calcFn{
private:
mutable double lastX;
mutable double lastF;

// Other members here
};

This feature could obviously be abused horrendously, but allows
situations like the current one without breaking encapsulation by
having the cache outside the class.

Philip Blakely (LSC) C++ Introduction 377 / 385

mutable

Input

Getting input from a file is hard within C++ if you want anything
more complex than space-separated numbers.

One answer is libconfig: www.hyperrealm.com/libconfig

Allows for input files like:

application:

{

window:

{

title = "My Application";

size = { /* width */ w = 640; /* height */ h = 480; };

pos = { x = 350; y = 250; };

};

}

Philip Blakely (LSC) C++ Introduction 378 / 385

www.hyperrealm.com/libconfig

Programming practice and style

Outline

48 Expression templates

49 Namespaces

50 Exceptions

51 mutable

52 Programming practice and style

Philip Blakely (LSC) C++ Introduction 379 / 385

Programming practice and style

Good programming practice

Being able to program well is somewhat of an art or skill

It is best to use relatively simple-looking approaches, rather than
obscure C++ constructs

Names should be descriptive, and use the correct part of speech

Variables - usually nouns
Functions - usually verbs

Philip Blakely (LSC) C++ Introduction 380 / 385

Programming practice and style

Error handling

In scientific computing, you should aim to check for errors as soon
and as often as possible.

Some error checking may be computationally expensive, in which
case you can skip it (but remember that you have omitted it)

You could use #ifdef DEBUG to omit checking when running
optimized code.

For example, bounds checking can be expensive, but if you remove
it remember that you may get seg-faults or odd behaviour if you
write outside the array

In general, if an error occurs, alert the user and abort immediately.

Philip Blakely (LSC) C++ Introduction 381 / 385

Programming practice and style

Debugging

The GNU debugger gdb is capable of understanding C++ classes

Member data and also that from base-classes is printed in an
easy-to-read fashion

It also (as from version 7.0) understands STL classes such as
vector etc.

(gdb) print myVector

$1 = std::vector of length 10, capacity 10 = {0, 2, 4, 6,

8, 10, 12, 14, 16, 18}

(gdb) print myMap

$1 = std::map with 3 elements = {

[1] = 0.90000000000000002,

[4] = 5,

[6] = 23.449999999999999

}

Philip Blakely (LSC) C++ Introduction 382 / 385

Programming practice and style

C++ 17 / C++ 20

So far we have been dealing with the C++14 standard (broadly
speaking).

However, the C++17 standard was finalised in December 2017, and
the C++20 standard had its final draft in September 2020.

These introduce several new features to the language

Many compilers support some of these features, but it may be a
year or two before complete support for C++20 is available

For a rather technical overview of what features were introduced
at each standard, see
https://gcc.gnu.org/projects/cxx-status.html

Philip Blakely (LSC) C++ Introduction 383 / 385

https://gcc.gnu.org/projects/cxx-status.html

Programming practice and style

Programming Quotes

“Premature optimization is the root of all evil” - Donald Knuth

“Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you’re as clever as you can be
when you write it, how will you ever debug it?” - Brian Kernighan

Philip Blakely (LSC) C++ Introduction 384 / 385

Programming practice and style

Further reading

Code Complete (Steve McConnell)
(Useful for code-designing hints)

www.oodesign.com

Solid Code (Marshall, Bruno)

C++ Templates (Vandevoorde & Josuttis)

Modern C++ Design (Alexandrescu)

Programming Pearls, (Jon Bentley)

Philip Blakely (LSC) C++ Introduction 385 / 385

www.oodesign.com

