
Part II

Basic Mathematics

Philip Blakely (LSC) C++ Introduction 41 / 385

Basic arithmetic

Outline

4 Basic arithmetic

5 Types and conversions

6 Branching

7 Logical operations

Philip Blakely (LSC) C++ Introduction 42 / 385

Basic arithmetic

Basic mathematics

The basic operators +, -, *, / exist and act more-or-less as you would
expect.

int a = 5;
int b = 3;
int c = a*b + 5;
std::cout << "c = " << c << std::endl;
c = c * 2;
std::cout << "c = " << c << std::endl;

Modulus operator: 7 % 3 == 1.
This has the same precedence as * and /.
These operators may not quite act as you expect if the numbers
involved overflow their types. Of which, more later...

Philip Blakely (LSC) C++ Introduction 43 / 385

Basic arithmetic

Literals

Decimal integers are specified as:
10, 42, 0, 12, 1e3

Double-precision floating-point numbers are specified as:
1.23e4, 1e-3

Binary integers are specified as:
0b101010

Hexadecimal integers are specified as:
0xa, 0x100, 0xffff

Octal integers are specified with a leading zero:
010, 077, 0123

Single characters are specified as:
‘a‘, ‘b‘

“Strings” of characters are specified as:
"Hello"

Philip Blakely (LSC) C++ Introduction 44 / 385

Basic arithmetic

Short-hand operators

There are short-hand versions of some operate-and-assign operations:
+= -= *= /= %=

Both the following lines do the same thing (on basic arithmetic types)

a = a + 5;
a += 5;

Also the increment and decrement operators ++ --:
Both the following lines do the same thing (on basic arithmetic types).

i++; j−−;
i = i+1; j = j−1;

(Hence the name C++)

Philip Blakely (LSC) C++ Introduction 45 / 385

Basic arithmetic

Pre- and post-increment

There is a difference between i++ and ++i:

The pre-increment ++i increments i and evaluates to the result
after the increment.

The post-increment i++ evaluates i and then increments it

int i=2;
int j=(i++); // j=2, i=3
int k=(++i); // k=4, i=4

You are advised not to write code that relies subtly on the
distinction between the two.

Philip Blakely (LSC) C++ Introduction 46 / 385

Basic arithmetic

Bitwise operators

C++ also has operators that act bitwise

Left-shift << and right-shift >>

These shift the binary representation of an integer to the left or
right:

int a = 43; // 101011 in binary
int b = a << 2; // b = 172 (or 10101100 in binary)
int c = a >> 2; // c = 10 (or 1010 in binary)

Bitwise NOT: int a = ∼ 5;

Now a = -6 or 111...1010

Bitwise OR: int a = 11 | 12; // a = 15

Bitwise AND: int a = 11 & 12; // a = 8

Philip Blakely (LSC) C++ Introduction 47 / 385

Types

Outline

4 Basic arithmetic

5 Types and conversions

6 Branching

7 Logical operations

Philip Blakely (LSC) C++ Introduction 48 / 385

Types

Basic types

Definition

The kind of information stored in a variable is referred to as its “type”.

Examples of fundamental types in C++ are: int, float,

double, bool, unsigned int

C++ performs static type-checking: the types used must be known
at compile-time so that the function to be called can be
determined.

This allows for higher-performance than other dynamically-typed
languages that check types at run-time.

If a function cannot be called with precisely the given types, then
either types may be converted (using standard conversions such as
int 7→ float) or the compilation may fail.

Philip Blakely (LSC) C++ Introduction 49 / 385

Types

Basic types ctd.

Integral types:

bool

char, int, short int, long int

(can be preceded by signed (the default) or unsigned)

Floating point types:

float single precision - usually 32-bit
double double precision - usually 64-bit
long double extended double precision

void - absence of information

Philip Blakely (LSC) C++ Introduction 50 / 385

Types

Type ranges

Typical for current 64-bit computers - not mandated by the
C++ standard

Type Bits Range

signed char 8 -128 to 127

unsigned char 8 0 to 255

signed short int 16 -32768 to 32767

unsigned short int 16 0 to 65535

signed int 32 −(231) to 231 − 1

unsigned int 32 0 to 232 − 1

signed long int 64 −(263) to 263 − 1

unsigned long int 64 0 to 264 − 1

float 32 ±3.4× 1038 (∼ 7 s.f.)

double 64 ±1.7× 10308 (∼ 15 s.f.)

Philip Blakely (LSC) C++ Introduction 51 / 385

Types

Programmatically discovering numeric type properties

You may wish to write a portable program that can check the
properties of the numeric types at run-time.

For all built-in integral types, such as int, the following are
available:

#include <limits>
int std::numeric limits<int>::digits; // Binary digits
bool std::numeric limits<int>::is signed;
bool std::numeric limits<int>::is integer;
int std::numeric limits<int>::min();
int std::numeric limits<int>::max();

For floating-point types, the following are available:

int std::numeric limits<float>::digits; // Binary digits in
the mantissa

float std::numeric limits<float>::min();
float std::numeric limits<float>::max();
float std::numeric limits<float>::epsilon();

where ε is the smallest s.t. 1 + ε > 1.

See a reference manual for all available values.
Philip Blakely (LSC) C++ Introduction 52 / 385

Types

Variable declaration

It is possible to declare multiple variables on a single line:

int a,b,c=5;
double x=0.9, y=1.1, z;

will declare integers a, b, c,

initializing c to be 5,

and double-precision variables x,y,z,

initializing x and y, but not z.

Philip Blakely (LSC) C++ Introduction 53 / 385

Types

Integer division in C++

A common problem found when learning C++ is that 1/3 == 0

Integer division always yields an integer

(-4) / 3 is probably equal to -1 (i.e. round-towards-zero)

but could be -2 depending on the particular implementation
(compiler)

Note that modulo arithmetic is defined such that for integers

(a/b)*b + a%b == a

so modular arithmetic is always consistent with division.

If you need moduli of negative numbers, you should check what
(-4) % (-3) gives.

Philip Blakely (LSC) C++ Introduction 54 / 385

Types

Integer overflow/wrapping in C++

Integers are represented using a fixed number of bits

When the result (or intermediate result) of an operation cannot be
represented in this, then what happens?

unsigned int will wrap around, i.e.

unsigned int i = 4294967295; // 232 − 1
unsigned int j = i + 1; // Now j == 0

Overflow on signed arithmetic is not defined

int i = 2147483647; // 231 − 1;
int j = i + 1;

The value of j is not defined by the C++ standard

It may be −231, but it need not be.

Your program could even crash at this point from integer overflow.
(Misleadingly unlikely.)

Philip Blakely (LSC) C++ Introduction 55 / 385

Types

Avoiding integer overflow

Do not assume that all compilers/systems do the same as the one
you’re currently using

Further, do not assume that your compiler will give the same
answer in all circumstances - may be affected by optimization

To avoid issues, you would need:

signed int a, b, c = 0;
// Initialize a and b
if(b == 0 | | (b != 0 &&
abs(std::numeric limits<signed int>::max() / b) < abs(a)))
{
c = a * b;

}

However, this is probably overkill and too expensive for everything
except software needing extensive robustness or security checks.

It’s worth bearing in mind, though.

Philip Blakely (LSC) C++ Introduction 56 / 385

Types

Floating-point arithmetic

Need to store finite-precision approximations to real numbers

Floating-point arithmetic is not exact

Floating-point arithmetic is commutative x * y == y * x

Floating-point arithmetic is not associative:
(x+y)+z not necessarily the same as x+(y+z).

You should (almost) never test for exact equality of floating-point
numbers: 3*(1.0/3.0) may not be equal to 1.

Floating-point exceptions occur upon division by zero,
square-roots of -ve numbers, and similar

These can be caught and may help in tracking down bugs, but
may not be reliable.

Philip Blakely (LSC) C++ Introduction 57 / 385

Types

Floating-point arithmetic ctd

NaN stands for Not A Number.

This can arise from 0/0, ∞/∞ and similar computations.

For full details, see “What every computer-scientist should know
about floating-point numbers” (available online)

Philip Blakely (LSC) C++ Introduction 58 / 385

Types

Type conversion

When assigning an integer to a floating-point value or performing
an operation on an integer and a floating-point number:

double a = 2 + 5.3;

then the 2 is converted to double precision before the addition is
performed.

When performing a division of two integers, any of the following
will work:

double oneThird = 1.0/3.0;
double oneThird = 1/(double)3;
double oneThird = (double)1/3;

Note that specifying a floating-point number gives double
precision by default.

To specify single-precision, use a suffix f: 3.2f.

Philip Blakely (LSC) C++ Introduction 59 / 385

Types

Exponential notation

Larger/smaller numbers can be specified by using exponential
notation:
float b = 1.3e10f; float c = -9e-13f;

Note that specifying a number out of range leads to undefined
behaviour:
double s = 1.3e400; // Contents of s at run-time are undefined

In theory, your program could crash here. Again, misleadingly
unlikely.

Philip Blakely (LSC) C++ Introduction 60 / 385

Types

Truncation

Assigning a float to int truncates the value:

float a = 5.2f;
int b = a; // Now b == 5
float c = −3.141f;
int d = c; // Now d == −3

Assigning a value larger than that which can be contained by the
destination type gives undefined results.

float e = 1e10; // Bigger than 232

int f = e; // result undefined

Philip Blakely (LSC) C++ Introduction 61 / 385

Types

Mathematical functions

Include these using #include <cmath>

Various standard functions exist, in both single-precision and
double-precision forms.

sin, cos, tan, sqrt, log, exp, asin, acos

fabs - floating-point absolute-value

abs - integer absolute-value

ceil, floor - round up/down

atan2(y,x) = tan−1(y/x) and deals with x, y = 0 appropriately

Philip Blakely (LSC) C++ Introduction 62 / 385

Types

pow

pow(x,y) = xy

pow has four forms:

float pow(float, float)
double pow(double, double)
long double pow(long double, long double)
ResultType pow(Arithmetic1 base, Arithmetic2 exp)

Note that integral powers are not covered in this.

pow(2,3) will convert 2 to double-precision floating-point
and then calculate 2.0*2.0*2.0

The third option mentions long double - extended precision.
May or may not give better accuracy.

The fourth option allows all combinations of arithmetic types not
covered by the first three. The return type is always double or
long double.

Philip Blakely (LSC) C++ Introduction 63 / 385

Branching

Outline

4 Basic arithmetic

5 Types and conversions

6 Branching

7 Logical operations

Philip Blakely (LSC) C++ Introduction 64 / 385

Branching

Branching

We often want to change what our code does depending on input.
We can use if statements which evaluate a set of statements only if a
given condition holds:

int a;
std::cin >> a;
if(a == 0){

std::cout << "a is equal to 0";
}

Note the equality test operator == which is different from assignment
operator =.

Philip Blakely (LSC) C++ Introduction 65 / 385

Branching

Else

The extended construct of if is:

if(condition)
execute−if−true;

else
execute−if−false;

if(a < 0){
std::cout << "a is negative" << std::endl;

}
else{

std::cout << "a is non−negative" << std::endl;
}

Philip Blakely (LSC) C++ Introduction 66 / 385

Branching

Else-if chains

if(a < 0){
std::cout << "a is negative" << std::endl;

}
else

{

if(a > 0){
std::cout << "a is positive" << std::endl;

}
else{

std::cout << "a is zero" << std::endl;
}

}

The final else is associated with the immediately preceeding if.
This highlights the importance of grouping statements with braces.

Philip Blakely (LSC) C++ Introduction 67 / 385

Branching

Else-if chains

if(a < 0){
std::cout << "a is negative" << std::endl;

}
else { if(a > 0){

std::cout << "a is positive" << std::endl;
}
else{

std::cout << "a is zero" << std::endl;
}
}

The final else is associated with the immediately preceeding if.
This highlights the importance of grouping statements with braces.

Philip Blakely (LSC) C++ Introduction 67 / 385

Branching

Relational operators

The following operators compare two values and result in a boolean:

< > Less/Greater than

<= >= Less/Greater than or equal to

== Equal

!= Not equal

if(a != 1){
std::cout << "a is not equal to 1" << std::endl;

}

The result of one of these can also be assigned to a boolean variable:

bool aIsPositive = (a > 0);
if(aIsPositive){

std::cout << "Variable is +ve" << std::endl;
}

Philip Blakely (LSC) C++ Introduction 68 / 385

Branching

Warning

The equality test operator == is not the same
as the assignment operator =

So, a=3 always sets a to be equal to 3 and the expression returns
the new value of a.

if(a = 3){
std::cout << "a is 3" << std::endl;

}

will set a=3 and always print the given statement
(because 3 converts to true).

Here, a==3 should be used instead.

If you convert a boolean value to an integer, true is 1 and false

is 0.

Philip Blakely (LSC) C++ Introduction 69 / 385

Branching

Boolean/integer equivalence

If you allocate a non-boolean number to a boolean, some
conversion must occur.

Any non-zero number converts to true

Zero converts to false

So, in the following:

if(0){
std::cout << "Never get here!" << std::endl;

}
if(−1){

std::cout << "Always get here!" << std::endl;
}

only the second message is printed.
Although this has valid uses, you should not usually use this style.

Philip Blakely (LSC) C++ Introduction 70 / 385

Logic

Outline

4 Basic arithmetic

5 Types and conversions

6 Branching

7 Logical operations

Philip Blakely (LSC) C++ Introduction 71 / 385

Logic

Logical operations

You can combine the results of comparisons as follows:

&& Logical AND

|| Logical OR

so that

if(a==0 | | b==0){
std::cout << "At least one of a and b is zero." <<
std::endl;

}

works as you would expect
Note that && has higher precedence than ||, so

if(a == 0 && b == 0 | | c == 2){
// More code here.

}

evaluates either if c==2 OR both a and b are zero.
Parentheses are usually a good idea here.

Philip Blakely (LSC) C++ Introduction 72 / 385

Logic

Logical NOT

There is also the NOT operator ! which has higher precedence
than && and ||

bool a = false;
if(!a){
std::cout << "a is false" << std::endl;

}

and therefore

if(!(a && b))

is the same as

if(!a | | !b)

(so long as evaluating a and b has no side-effects)

Philip Blakely (LSC) C++ Introduction 73 / 385

Logic

What not to do

The following is valid C++, but will not do what you want:

if(2 <= a <= 5){
std::cout << "a is between 2 and 5 (inclusive)" << std::endl;

}

will not evaluate precisely when a is between 2 and 5.
The compiler will see:

if((2 <= a) <=5)

Whatever a is, the result of (2 <= a) is either false or true, which
convert to 0 or 1, so this always evaluates to true.

Philip Blakely (LSC) C++ Introduction 74 / 385

Logic

Short-cut evaluation

When computing the result of a logical expression, only as many tests
as are required to determine the result are carried out, working from
left to right (taking parentheses and operator precedence into account)

int a = 0;
if(a == 0 | | b < 0){
//... Code here ...
}
if(a == 1 && b > 0){
//... Code here ...
}

In both cases, the second test is not performed.
This is called short-cut evaluation.
It is of more use in the following:

if(v.size() >= 5 && v[4] == 5)

where the second test could cause a seg-fault if v were not big enough.

Philip Blakely (LSC) C++ Introduction 75 / 385

Logic

Ternary Operator

As a shortcut to if-else, there is the ternary operator ?:

n = ((n % 2 == 1) ? 3*n+1 : n/2);

which is equivalent to

if(n % 2 == 1){
n = 3*n + 1;

}
else{
n = n/2;

}

The ternary operator should only be used to replace very simple
if-else statements.

and should usually be contained in parentheses due to its low
precedence (only just above =)

Philip Blakely (LSC) C++ Introduction 76 / 385

