
Part III

Further C++ constructs

Philip Blakely (LSC) C++ Introduction 77 / 385

Block and Scope

Outline

8 Block and Scope

9 Switch-case

10 Iteration

11 Operator Precedence

12 More file-handling

Philip Blakely (LSC) C++ Introduction 78 / 385

Block and Scope

Blocks and Scope

A block is a set of statements surrounded by {}.
These can be placed anywhere that a single statement can.

A definition of a variable (or other object) extends from its point
of declaration to the end of the block in which it has been defined.

Philip Blakely (LSC) C++ Introduction 79 / 385

Block and Scope

Block example

if(a == 3)
a = 4;
std::cout << "a is now 4" << std::endl;

will compile correctly, but will always print the message.
The if statement only applies to the a=4.

The programmer probably meant to write:

if(a == 3){
a = 4;
std::cout << "a is now 4" << std::endl;

}

Even if your if statement applies to only a single statement,
it is good practice always to use braces.

Philip Blakely (LSC) C++ Introduction 80 / 385

Block and Scope

Scope example

In the following, the scope of b is inside the braces only

int a = 2;
if(a == 2){

int b = 4;
a += b; // OK − b is in scope

}
a += b; // Compiler error − b is not known here

Scope also applies to functions, classes, and other constructs.

Scope is also important if you have multiple variables with the
same name

C++ does define which variable is referred to, but you shouldn’t
reuse variable names in the first place

You are more likely to get confused than the compiler.

Also, the storage for variables is freed once they go out of scope,
so there is no way of recovering their data.

Philip Blakely (LSC) C++ Introduction 81 / 385

Switch-case

Outline

8 Block and Scope

9 Switch-case

10 Iteration

11 Operator Precedence

12 More file-handling

Philip Blakely (LSC) C++ Introduction 82 / 385

Switch-case

Switch-case

When selecting from a finite list of options:

int a;
std::cin >> a;
switch(a){

case 0:
std::cout << "a = 0" << std::endl;
break;

case 1:
std::cout << "a = 1" << std::endl;
break;

default:
std::cout << "Neither 0 nor 1" << std::endl;

}

Avoids chains of if else

Can only switch on integral types (int, char, and similar)

The breaks cause execution to jump to after the switch block.

Philip Blakely (LSC) C++ Introduction 83 / 385

Switch-case

Break-usage

If break is not used, execution falls through to the next statement.

switch(a){
case 0:
case 1:
std::cout << "a is 0 or 1" << std::endl;
break;
case 2:
std::cout << "a is 2" << std::endl;
case 3:
std::cout << "a is 2 or 3" << std::endl;
break;
case 4:
case 5:
case 6:
std::cout << "a is larger than 3" << std::endl;

}

Philip Blakely (LSC) C++ Introduction 84 / 385

Switch-case

Variables in switch-case

Note that it is not permitted to declare variables directly inside a
switch case block:

switch(a){
case 0:

int b = x*y; // Not valid
break;

};

Either contain the new variable and related statements in an
enclosing set of braces, or declare it before the switch case:

switch(a){
case 0:
{
int b = x*y; // Valid

}
break;

};

Philip Blakely (LSC) C++ Introduction 85 / 385

Iteration

Outline

8 Block and Scope

9 Switch-case

10 Iteration

11 Operator Precedence

12 More file-handling

Philip Blakely (LSC) C++ Introduction 86 / 385

Iteration

Looping

We may want to repeat a series of instructions multiple times,
possibly for a sequence of values of a variable

A loop is a set of instructions that are carried out multiple times
(anywhere from zero to infinity)

Number of iterations is (probably) only known at run-time.

Number of iterations may not be known even as the loop starts.

Philip Blakely (LSC) C++ Introduction 87 / 385

Iteration

For loop

A “for” loop is usually used where the number of iterations is known at
the start of the loop:

For all values of i from 1 to 10:

Calculate i’th triangular number

Print i’th triangular number

End Loop

In C++ the specification of a for-loop is:

for(initialization ; condition ;
per-iteration-update)

{
// Code to loop over

}

Philip Blakely (LSC) C++ Introduction 88 / 385

Iteration

For loop

The simplest example is:

for(int i=0 ; i < 10 ; i++){
std::cout << "Iteration " << i << std::endl;

}

which will print:

Iteration 0

Iteration 1

...

Iteration 9

The initialization i=0 is carried out once only.

The condition i < 10 is checked at the beginning of each iteration
over the contained code.

The update i++ is carried out at the end of each iteration.

Philip Blakely (LSC) C++ Introduction 89 / 385

Iteration

More for loops

The following code:

int j=0;
int N=10;
for(int i=1 ; i <= N ; i++){

j += i;
std::cout << "Triangular number " << i

<< " is " << j << std::endl;
}

will print the triangular numbers up to 55.

We initialize j to be zero

At every iteration, j is increased by i and printed

The loop stops when i == 11;
the instruction block is not evaluated in this case.

Philip Blakely (LSC) C++ Introduction 90 / 385

Iteration

For extended

The previous example could also be written:

for(int i=1, j=1 ; i <= 10 ; i++, j += i){
std::cout << "Triangular number " << i

<< " is " << j << std::endl;
}

Here we see the comma operator, which allows multiple statements
to be put together.

It is only really used within the for loop, where a semi-colon is
already used to separate the parts of the loop definition.

However, you should not put too much into the for() statement.

The above example is not a good example of a for loop.

It is far less easy to read than the preceeding example
and is not as obviously correct.

Complex for-loop syntax can also stop OpenMP from working
efficiently (or at all)

Philip Blakely (LSC) C++ Introduction 91 / 385

Iteration

Infinite loops

It is not necessary to have all of the components of the for

specified.

For example:

for(; ;){
}

is valid, and corresponds to an infinite loop.

Any of the components can be missing in any combination.

Philip Blakely (LSC) C++ Introduction 92 / 385

Iteration

Comma operator

Strictly speaking, the comma operator returns its right-hand
argument

It has the lowest precedence of all operators

Therefore, it could be used to string statements together:

int i=7, i++, i++;

will result in i==9.

However, the comma operator is very rarely used (outside of for
loops), and any other use of it should be regarded as suspect.

Philip Blakely (LSC) C++ Introduction 93 / 385

Iteration

Range-based for-loops

An alternative form of the for-loop is a range-based for-loop:

for(int i : {0, 1, 4, 9, 16, 25}){
std::cout << "i = " << i << std::endl;

}

Or, perhaps more usefully:

std::vector<int> myValues;
// Fill in elements of myValues ...
// Double all elements of myValues
for(int& i : myValues){

i = i * 2;
}
for(int i : myValues){

std::cout << "i = " << i << std::endl;
}

The latter form will become more useful later.

Philip Blakely (LSC) C++ Introduction 94 / 385

Iteration

While loop

If you want to repeat a calculation as long as a particular condition is
satisfied, use a while loop:

while(condition){
// Code to perform
}

The condition is checked as the computer enters the loop, and
after each evaluation of the loop.

If the condition is false at this point, then jump to point directly
after the loop.

Note that the loop is not exited as soon as the condition is false,
only when execution reaches the end of the loop (and the
condition is still false).

Philip Blakely (LSC) C++ Introduction 95 / 385

Iteration

While example

bool found = false;
int i = 0;
while(! found){
if(isWantedObject(myObject[i])){
found = true;
std::cout << "I’ve found it!" << std::endl;

}
i++;

}

Just after the end of the loop, we know that found is true.
There are many other uses of while loops.

Philip Blakely (LSC) C++ Introduction 96 / 385

Iteration

Do-While loop

Very similar to a plain while loop:

do{
// Code to perform
}while(condition)

The condition is checked after each iteration.

So, the code in the loop is guaranteed to execute at least once.

If the condition is false at this point, then execution jumps to the
point directly after the loop.

Philip Blakely (LSC) C++ Introduction 97 / 385

Iteration

Do-While example

bool found = false;
do{
// Code to locate missing object
// Evaluated at least once

}while(!found);

At the end of the loop, we know that found is true

Philip Blakely (LSC) C++ Introduction 98 / 385

Iteration

Do/While/For equivalence

With a little thought, any do-while/while/for loop can be written
as any of these types

The only reasons for the existence of all three are:

Historical (older languages had them)
Readability (Different forms are usually used for different purposes)

Roughly, they are used as:

For: When number of iterations is known on entry to the loop
Do-while: When a condition is repeatedly checked throughout the
loop
While: As before, but when a condition may be known before the
loop starts and the loop may not need to be evaluated at all.

Philip Blakely (LSC) C++ Introduction 99 / 385

Iteration

Getting out of loops

In some cases, we may want to get out of a loop early:

for(int i=0 ; i < 10 ; i++){
double x = pow(y, i);
if(x > 1e10){
break; // Result too large − don’t print any more

}
std::cout << y << "ˆ" << i << " = " << x << std::endl;

}

break causes execution to immediately jump to directly after the loop.
It jumps out of any current for/while/do loop.

Philip Blakely (LSC) C++ Introduction 100 / 385

Iteration

Continuing execution

In some cases, we may want to skip the rest of a loop

while(!endOfFile){
char c = getNextChar();
if(c == ’\n’){ // New−line − nothing to do
continue;

}
// Do main processing work

}

continue causes execution to jump to just before the end of the
loop

The loop-condition is checked directly after continue, before
execution resumes at the loop-head.

This applies to for/while/do

Philip Blakely (LSC) C++ Introduction 101 / 385

Iteration

Goto and labels

Unfortunately, goto appears in C++ and can be used as follows:

goto myLabel;
// Some code here
myLabel:
// More code goes here

However, it must not be used to cause execution to jump across
past initializations of variables, or in/out of functions

Its use in practice should be regarded with extreme suspicion,
unless there is a very good reason why break/continue/if could
not be used.

Its use tends to make the execution path hard to follow when
debugging or trying to understand code, although it can be useful.

See “Goto considered harmful” (Dijkstra, 1968), but also “ “Goto
considered harmful” considered harmful” (CACM, March 1987)
and “ ‘ “Goto considered harmful” considered harmful’ considered
harmful?” (Comm. of the ACM, 1987).

Philip Blakely (LSC) C++ Introduction 102 / 385

Operator Precedence

Outline

8 Block and Scope

9 Switch-case

10 Iteration

11 Operator Precedence

12 More file-handling

Philip Blakely (LSC) C++ Introduction 103 / 385

Operator Precedence

Operator Precedence (Partial)

Precedence Op Description Associativity

2
++ −− Suffix inc/dec

left-to-right
() Function call

3
++ −− Prefix inc/dec

right-to-left+ - Unary plus/minus
! ˜ Logical NOT and Bitwise NOT

5 * / % Multiplication, division, modulus left-to-right
6 + - Addition/subtraction left-to-right
7 << >> Left/right shift left-to-right

8
< <= Less-than (or equal)

left-to-right
> >= Greater-than (or equal)

9 == != (Non-)equality test left-to-right
13 && Logical AND left-to-right
14 || Logical OR left-to-right
15 ?: Ternary Conditional right-to-left

16
= Assignment

right-to-left+= -= Assignment and add/subtract
*= /= %= Assignment and mult/div/mod

Philip Blakely (LSC) C++ Introduction 104 / 385

Operator Precedence

Operator precedence examples

Some examples of operator precedence:

double x = 2.0 * 4.5 + 5.2; // Evaluates to 14.2
double x = 2.0 * (4.5 + 5.2); // Evaluates to 19.4
double a = 3.0 / 1.5 * 2.0; // Evaluates to 4
int b = 9 / 2 % 3; // Evaluates to 1
int c = 1 << 2 * 3; // Evaluates to 64
int c = (1 << 2) * 3; // Evaluates to 12

Parentheses control the evaluation order of operators.
Use whenever they are required, or when it improves clarity.

Philip Blakely (LSC) C++ Introduction 105 / 385

More file-handling

Outline

8 Block and Scope

9 Switch-case

10 Iteration

11 Operator Precedence

12 More file-handling

Philip Blakely (LSC) C++ Introduction 106 / 385

More file-handling

File-handling

So far we have seen how to output to the terminal

To output to a file, we create a stream which goes into/comes from
a named file

#include <fstream>
std::ofstream outFile("/home/pmb39/MyFile.txt");
outFile << "Hello. I am in a file";
outFile << "5 * 10 = " << 5*10 << std::endl;
outFile.close();
std::ifstream inFile("/home/pmb39/dataFile");
int a;
inFile >> a; // read integer value from file
inFile.close()

Note the similarity of the code to outputting to the terminal

The differences between terminal and file have been abstracted
away

Both are effectively places to which a stream of characters can be
sent
Philip Blakely (LSC) C++ Introduction 107 / 385

More file-handling

I/O modes

There are various open-modes for a file:

std::io base::in - open for input
std::io base::out - open for output
std::io base::trunc - truncate existing file when opening
std::io base::ate - seek to end after opening
std::io base::app - append to file (seek to end before each write -
includes intervening writes by potential other processes)

Opening a file for input is therefore:

std::ifstream inFile("MyFile.txt", std::io base::in);

To close a file, use

inFile.close()

Philip Blakely (LSC) C++ Introduction 108 / 385

More file-handling

File-errors

In order to detect bad stream-states, the following tests can be
used, all returning bools:

myFile.eof(); // End of file seen
myFile.fail(); // Next operation will fail
myFile.bad(); // Stream is corrupted
myFile.good(); // None of the above hold

Therefore:

while(!myFile.eof()){
myFile >> i;

}

will read successive values into i until the end of the file is reached.

Philip Blakely (LSC) C++ Introduction 109 / 385

More file-handling

File-error examples

int a;
std::cout << "Enter a: ";
std::cin >> a;
std::cout << "a = " << a << std::endl;

std::cout << "Fail = " << std::cin.fail() << std::endl;
std::cout << "Good = " << std::cin.good() << std::endl;
std::cout << "Bad = " << std::cin.bad() << std::endl;

Enter a: 1

a = 1

Fail = 0

Good = 1

Bad = 0

Enter a: x

a = 0

Fail = 1

Good = 0

Bad = 0

Philip Blakely (LSC) C++ Introduction 110 / 385

More file-handling

More stream operations

It is possible to perform low-level operations on streams:

char c;
myFile.get(c); // Get a single character
char line[BUFFER SIZE];
// Read a whole line into a char−array
myFile.getline(line, BUFFER SIZE);

These should only be used when reading custom formats/files

It is possible to create strings as if they were streams:

std::ostringstream myMsg;
std::string name = "Dave";
myMsg << "Hello " << name;
std::string msg = myMsg.str(); // msg contains "Hello Dave"

Philip Blakely (LSC) C++ Introduction 111 / 385

