
Part IV

Functions

Philip Blakely (LSC) C++ Introduction 112 / 385

Functions

Outline

13 Functions

14 Passing by value and reference

15 More on function parameters

16 Const and Static

17 Enumerations

18 Vectors, arrays and pointers

Philip Blakely (LSC) C++ Introduction 113 / 385

Functions

Functions

A vital part of many programming languages is the use of
functions

These are fairly similar to mathematical functions

Given a set of inputs, the function will produce a result

The output of the function should not depend on any previous
calls that have been made to it.

The inputs to a function are called “parameters”

The ouput from a function is called its return value.

Philip Blakely (LSC) C++ Introduction 114 / 385

Functions

Functions

Every C++ function has a return-type

This may be void implying nothing to return

Functions cannot be declared inside another function.

double quadraticSoln(double a, double b, double c){
return (−b + sqrt(b*b − 4*a*c)) / (2*a);

}

void printDouble(int x){
std::cout << "Twice " << x << " is " << 2*x << std::endl;

}

int main(void){
double x = quadraticSoln(1, −3, 2);
printDouble(5);
return 0;

}

Philip Blakely (LSC) C++ Introduction 115 / 385

Functions

Functions ctd

A function can have multiple return points:

double quadraticSoln(double a, double b, double c){
if(fabs(a) < 1e−8){ // it’s a linear eqn
return −c/b;

}
else{
return (−b + sqrt(b*b − 4*a*c)) / (2*a);

}
}

and the function returns as soon as it reaches one.

Philip Blakely (LSC) C++ Introduction 116 / 385

Functions

Recursive functions

Recursive functions are permitted:

int factorial(int n){
if(n > 1){

return n * factorial(n−1);
}
else{
return 1;

}
}

is a valid function.

A new copy of the function is placed on the stack for each
iteration, with distinct local variables (if any).

If infinite/high recursion occurs, then the computer may run out
of stack space.

The above is not a particularly good example of recursion use.

Philip Blakely (LSC) C++ Introduction 117 / 385

Passing by value and reference

Outline

13 Functions

14 Passing by value and reference

15 More on function parameters

16 Const and Static

17 Enumerations

18 Vectors, arrays and pointers

Philip Blakely (LSC) C++ Introduction 118 / 385

Passing by value and reference

Passing by value

Parameters are passed to functions by value by default

int sum(int a, int b){
a += b;
return a;

}
int main(void){

int x = 3, y = 5;
std::cout << "sum=" << sum(x, y) << " ";
std::cout << "x=" << x << " y=" << y << std::endl;
return 0;

}

will print

sum=8 x=3 y=5

i.e. the value of x has not been changed by sum().

The value of x has been copied into the variable a

This copy requires some work on the part of the computer.

Philip Blakely (LSC) C++ Introduction 119 / 385

Passing by value and reference

Passing by reference

Parameters can be made to be passed to functions by reference
i.e. the function being called has a reference to the value that was
passed, rather than a copy, potentially saving time.

Passing a by reference from the previous example gives:
int sum(int &a, int b){
a += b;
return a;

}
int main(void){

int x = 3, y = 5;
std::cout << "sum=" << sum(x, y) << " ";
std::cout << "x=" << x << " y=" << y << std::endl;
return 0;

}

will print

sum=8 x=8 y=5

i.e. the value of x has been changed by sum().

The variable a refers to the same location in memory as x

Philip Blakely (LSC) C++ Introduction 120 / 385

Passing by value and reference

Pass-by-reference

Further example of passing by reference

void doubleMe(int& x){
x *= 2;

}
int main(void){
doubleMe(5); // Won’t compile: can’t take reference of "5"
int g = 5;
doubleMe(g); // Will compile
std::cout << g << std::endl; // Will output 10
return 0;

}

Philip Blakely (LSC) C++ Introduction 121 / 385

Passing by value and reference

Notes on pass-by-reference

Passing by value is usually preferred

With pass-by-reference, a function call may alter the value of a
variable, which is not evident from looking at the function-call
alone

Pass-by-reference can cause non-obvious aliasing:
int f(int &a, int &b){

a += 1;
b += 1;
return a + b;

}

int x = 5;
int y = f(x, x); // y == 14

Pass-by-reference is useful in two main cases:
When a function needs to return more than one value
(e.g. its function is to update a variable and return an error-code)
When the object being passed is expensive to copy (in which case a
const int& x should be used instead - see later).

Philip Blakely (LSC) C++ Introduction 122 / 385

Passing by value and reference

l-values and r-values

An l-value is roughly “something that exists in memory”,
i.e. it can have its reference taken

The name l-value comes from being on the left-hand-side of an
assignment

An r-value is an expression that does not exist in a named memory
location
It may be a literal value (e.g. 5),
or the result of an operation (e.g. x + y),
or the result of a function (e.g. f(x))

The name r-value comes from being on the right-hand-side of an
assignment

Philip Blakely (LSC) C++ Introduction 123 / 385

More on function parameters

Outline

13 Functions

14 Passing by value and reference

15 More on function parameters

16 Const and Static

17 Enumerations

18 Vectors, arrays and pointers

Philip Blakely (LSC) C++ Introduction 124 / 385

More on function parameters

Default function parameters

It is possible to have default values for function parameters:

int sumNos(int a, int b=2, int c=3){
return a + b + c;

}

std::cout << sumNos(1, 3, 5) << sumNos(1,3) << sumNos(1) <<
std::endl;

will output “976” because the non-specified values are filled in by
default.

Philip Blakely (LSC) C++ Introduction 125 / 385

More on function parameters

Default parameters ctd

Default parameters must always come at the end of the parameter
list

If one default parameter is specified, then all default parameters
before it must also be specified

int f(int a=0, double b, double c){ // Compile−error
}

double g(int a, double b=0, double c=1){
// Code here

}

g(3, 2); // Always means a=3, b=2
g(3, 0, 2); // Only way to set c=2, even though b takes its

default value

Philip Blakely (LSC) C++ Introduction 126 / 385

More on function parameters

Function prototypes

If we have mutually-dependent functions f and g, each of which
may call the other, then we need to do the following:

int f(int); // Function declaration
int g(int); // Function declaration

// Function definition
int f(int x){
// Computation requiring g to be called
}

// Function definition
int g(int y){
// Computation requiring f to be called
}

We assume that infinite recursion will not result

In order that each function knows what sort of function the other
is, each function has to have been declared before it is called,
but not necesarily defined.

Philip Blakely (LSC) C++ Introduction 127 / 385

Const and Static

Outline

13 Functions

14 Passing by value and reference

15 More on function parameters

16 Const and Static

17 Enumerations

18 Vectors, arrays and pointers

Philip Blakely (LSC) C++ Introduction 128 / 385

Const and Static

Const-ness

Variables can also be declared const

i.e. they cannot be changed after their creation.

const int a = 5;
a = 6; // Will cause compile failure
const int b; // Will cause compile failure − uninitialized

Useful for guarding against programmer-error

Note that const int x = 8; means that x is an l-value, but is
not modifiable because it is const

Philip Blakely (LSC) C++ Introduction 129 / 385

Const and Static

Const function parameters

One of the reasons for using pass-by-reference was that copying an
object was expensive.

In order to reduce the potential for unintended altering of such an
object, the following is common:

int f(const MyLargeObject& a){
// Use a but don’t alter it
}

Thus, the expense of copy is (usually) avoided, and the function is
prevented from changing it.

The compiler may make a copy if it wishes, but need not do so.

This also indicates to another programmer that the function does
not change non-static members of a at all (without having to read
the function in detail).

Philip Blakely (LSC) C++ Introduction 130 / 385

Const and Static

Static variables

Ideally, the result of a function should be independent of any
previous calls to that function

However, there are cases when the internal workings of a function
might depend on previous calls

The static keyword causes the variable’s value to persist between
function calls

The variable is only initialised the first time it is seen.

(Care should be taken for threaded applications; static is not
thread-safe).

Philip Blakely (LSC) C++ Introduction 131 / 385

Const and Static

Static variable example

double f(double x){ // x assumed +ve
static double previousX = −1;
static double previousAnswer = 0;
if(previousX == x){
return previousAnswer;

}
// Expensive calculation
previousX = x;
previousAnswer = result;
return result;

}

The above code implements a simple caching optimization.

If the same value is passed to the function multiple times, the
calculation is only carried out the first time.

This does not contradict the idea that a function should be
independent of its parameters; the result remains the same, even if
the computation performed is different.

Philip Blakely (LSC) C++ Introduction 132 / 385

Enumerations

Outline

13 Functions

14 Passing by value and reference

15 More on function parameters

16 Const and Static

17 Enumerations

18 Vectors, arrays and pointers

Philip Blakely (LSC) C++ Introduction 133 / 385

Enumerations

Enums

Suppose you have three options for an ODE solver:
Euler, RK2, and RK4.

How can you store this choice in a variable?

Could use a coding scheme: 0 =⇒ Euler, 1 =⇒ RK2, 2 =⇒
RK4

This relies on you (and later users of your code) remembering the
scheme and sticking to it

Could define global variables int Euler = 0 etc.

None of these prevent int myScheme = 3; though

Philip Blakely (LSC) C++ Introduction 134 / 385

Enumerations

Enums ctd.

Solution is to use an enumeration:
Similar to a coding scheme, but now enforced by compiler.

enum class ODEsolver {Euler, RK2, RK4};

ODEsolver mySolver = ODEsolver::Euler;
mySolver = 2; // Compile−time error

void useSolver(ODEsolver, double*);
useSolver(mySolver, data);

ODEsolver is now a new type, with all C++ type-safety features
attached.

i.e. an int cannot be converted to an enum.

Philip Blakely (LSC) C++ Introduction 135 / 385

Vectors, arrays and pointers

Outline

13 Functions

14 Passing by value and reference

15 More on function parameters

16 Const and Static

17 Enumerations

18 Vectors, arrays and pointers

Philip Blakely (LSC) C++ Introduction 136 / 385

Vectors, arrays and pointers

Vectors - std::vectors

C++ has a std::vector (use #include <vector>)

std::vector<int> a(100);
for(size t i=0 ; i < a.size() ; i++){
a[i] = i;

}
std::vector<int> b(200);
for(size t i=0 ; i < b.size() ; i++){

b[i] = a[i/2] + i;
}

A std::vector is always indexed from zero up to size()-1.
Memory is freed automatically when vector goes out of scope.
Vectors can be passed to functions with little cost; data is not
explicitly copied if passed constant-by-reference (see later)
However, bounds checking is not done for [] access:

a[100] = 0; // Will likely cause hard−to−trace error

The following is available (at a slight computational cost):

a.at(100) = 0; // Will produce useful error at run−time.

We shall discuss this in more detail later.Philip Blakely (LSC) C++ Introduction 137 / 385

Vectors, arrays and pointers

C++ arrays

For small, fixed-size arrays, C++ has an explicit std::array type:

#include <array>
std::array<int,5> a = {1,4,9,16,25};
std::cout << a[0] << a[4] << std::endl;
a[3] = 5;

Arrays are always indexed from zero.

Array-size must be known at compile-time

Arrays cannot be resized at compile-time (unlike a vector)

No bounds checking is done

Anything requiring large arrays or dynamic resizing should be
done with heap allocation or std::vector

Philip Blakely (LSC) C++ Introduction 138 / 385

Vectors, arrays and pointers

Arrays ctd

No bounds checking is done for arrays

std::array<int, 5> a;
a[0] = 6; // valid
a[3] = 3; // valid
a[−1] = 8; // invalid
a[5] = 9; // invalid

The third and fourth lines above will lead to either a seg-fault or
undefined results (undefined behaviour).

Arrays cannot have their size defined at run-time; the ’5’ must be
known to the compiler.

Philip Blakely (LSC) C++ Introduction 139 / 385

Vectors, arrays and pointers

C-style arrays - a horrible warning

C++ inherited arrays from C

int a[5] = {1, 4, 9, 16, 25};

You will often see these used in legacy C++ code, but you are
strongly advised not to use them yourself.

There are potentially confusing issues with passing this type of
array to functions, the difference between this array and pointers,
and with determining the size of the array at run-time.

Philip Blakely (LSC) C++ Introduction 140 / 385

Vectors, arrays and pointers

Passing arrays to functions

The syntax to pass an array to a function is:
int sum(std::array<int,10> a){
// Code here
}

std::array<int,10> b;
int total = sum(b);

but this causes the data to be copied.
To allow the contents of the array to be altered within the
function:
void f(std::array<int,4>& b){
b[0] = 5;

}

std::array<int,4> a = {1,2,3,4};
f(a);
std::cout << a[0]; // Prints 5

The function parameter could be declared const, which would
prevent this.
Philip Blakely (LSC) C++ Introduction 141 / 385

Vectors, arrays and pointers

Two-dimensional arrays

Two-dimensional arrays can be achieved by:

std::array<std::array<int, 3>, 3> a;
a[2][1] = 1;

This will produce a constant-size 2D array in a contiguous block of
memory.

Philip Blakely (LSC) C++ Introduction 142 / 385

Vectors, arrays and pointers

Matrices

As may already be obvious, C++ arrays are not easy to use for
matrix operations.

Possible libraries include:

BLAS - Standardised C/Fortran specification for basic linear
algebra functions
LAPACK - Standardised C/Fortran interface for solving systems of
linear equations, finding eigenvectors, etc.
Armadillo arma.sourceforge.net - C++ interface for matrix
operations - uses LAPACK as a back-end
Eigen eigen.tuxfamily.org - C++ interface for matrix operations
- uses LAPACK as a back-end

I have not had much experience with any of these, but believe they
are fairly stable and should give good performance in general.

A good implementation of BLAS/LAPACK should be used for
preference, preferably tuned for your system, e.g. ATLAS.

Philip Blakely (LSC) C++ Introduction 143 / 385

arma.sourceforge.net
eigen.tuxfamily.org

