
Part V

Memory and pointers

Philip Blakely (LSC) C++ Introduction 144 / 385

Pointers

Outline

19 Pointers

20 Memory

21 Function wrappers

Philip Blakely (LSC) C++ Introduction 145 / 385

Pointers

Pointers

A variable x stored in memory is stored at a specific place in
memory (its address)

If we store that address in a variable p, then p is a pointer to x

int x = 5;
int* p = &x; // Store address of x in p
std::cout << *p << std::endl; // Prints value of x
*p = 6; // Changes x
std::cout << x; // Prints 6

Note the address-of operator &.

This is different from the pass-by-reference modifier & seen earlier.

Philip Blakely (LSC) C++ Introduction 146 / 385

Pointers

Declaring multiple pointers

When declaring multiple variables:

int* a,b,c;

creates an integer pointer a and integers b and c

A clearer way to write the same thing is

int *a, b, c;

or

int *a;
int b,c;

It may help to think of the second example as declaring: “A
variable which, when dereferenced, gives an integer.”

Alternatively, just avoid this confusion altogether by using the
third way of writing this.

Philip Blakely (LSC) C++ Introduction 147 / 385

Pointers

Aliasing

Through the use of pointers and references, a single variable in
memory can be changed using multiple labels

This can cause programmer errors, if variables are changed in
non-obvious ways: just because there is no x= doesn’t mean that x
is constant:

int f(int& x, int &y){
const int a = x;
y = y+1;
const int b = x;

}
f(s, s); // Would lead to a != b within f

Note that not even using const on x enforces this

Philip Blakely (LSC) C++ Introduction 148 / 385

Pointers

Const-pointers

Const-ness extends naturally to pointers

However, some clarification may be needed:

const int x = 0;
int y;
const int z = 1;
const int* p; // Pointer to a constant integer
*p = 5; // Compiler−error
p = &x; // OK
p = &y; // OK − but y cannot be changed through p
int* const q = &y; // Constant−pointer to a non−constant

integer
*q = 4; // OK − changes y
q = &z; // Compiler error − would change q

const int* const r = &x;
*r = 3; // Compile−error
r = &z; // Compile−error

// Multiple constant ptrs to const vars
const int *const s = &x, *const t = &y;

Philip Blakely (LSC) C++ Introduction 149 / 385

Memory

Outline

19 Pointers

20 Memory

21 Function wrappers

Philip Blakely (LSC) C++ Introduction 150 / 385

Memory

Heap and Stack

The stack is a Last-In-First-Out structure (imagine a stack of
plates)

The stack contains the local data used by all functions currently
executing

When calling a function, its parameters are copied onto the stack,
As local variables are allocated, they are also placed on the stack

When exiting a function:

its return value is copied out
all local variables are deleted
and the function is taken off the stack

This leaves the calling function at the top, so it can continue with
evaluation

The stack has limited size, so very large arrays can’t be stored on
it

Philip Blakely (LSC) C++ Introduction 151 / 385

Memory

Stack simulation

1 int f(int y){
2 int z = 3*y*y + 4*y;
3 return z;
4 }
5
6 int main(void){
7 int x = f(5);
8 }

Line Counter:
6

Philip Blakely (LSC) C++ Introduction 152 / 385

Memory

Stack simulation

1 int f(int y){
2 int z = 3*y*y + 4*y;
3 return z;
4 }
5
6 int main(void){
7 int x = f(5);
8 }

Line Counter:
7

Philip Blakely (LSC) C++ Introduction 152 / 385

Memory

Stack simulation

1 int f(int y){
2 int z = 3*y*y + 4*y;
3 return z;
4 }
5
6 int main(void){
7 int x = f(5);
8 }

Line Counter:
1

Philip Blakely (LSC) C++ Introduction 152 / 385

Memory

Stack simulation

1 int f(int y){
2 int z = 3*y*y + 4*y;
3 return z;
4 }
5
6 int main(void){
7 int x = f(5);
8 }

Line Counter:
1

Philip Blakely (LSC) C++ Introduction 152 / 385

Memory

Stack simulation

1 int f(int y){
2 int z = 3*y*y + 4*y;
3 return z;
4 }
5
6 int main(void){
7 int x = f(5);
8 }

Line Counter:
2

Philip Blakely (LSC) C++ Introduction 152 / 385

Memory

Stack simulation

1 int f(int y){
2 int z = 3*y*y + 4*y;
3 return z;
4 }
5
6 int main(void){
7 int x = f(5);
8 }

Line Counter:
2

Philip Blakely (LSC) C++ Introduction 152 / 385

Memory

Stack simulation

1 int f(int y){
2 int z = 3*y*y + 4*y;
3 return z;
4 }
5
6 int main(void){
7 int x = f(5);
8 }

Line Counter:
3

Philip Blakely (LSC) C++ Introduction 152 / 385

Memory

Stack simulation

1 int f(int y){
2 int z = 3*y*y + 4*y;
3 return z;
4 }
5
6 int main(void){
7 int x = f(5);
8 }

Line Counter:
4

Philip Blakely (LSC) C++ Introduction 152 / 385

Memory

Stack simulation

1 int f(int y){
2 int z = 3*y*y + 4*y;
3 return z;
4 }
5
6 int main(void){
7 int x = f(5);
8 }

Line Counter:
7

Philip Blakely (LSC) C++ Introduction 152 / 385

Memory

Stack simulation

1 int f(int y){
2 int z = 3*y*y + 4*y;
3 return z;
4 }
5
6 int main(void){
7 int x = f(5);
8 }

Line Counter:
7

Philip Blakely (LSC) C++ Introduction 152 / 385

Memory

Heap

The heap is (essentially) the rest of your computer’s memory

Can store memory-blocks of arbitrary size

Allocation/deletion of blocks can be done in any order

Allocation has some time/memory overhead, so usually good to
allocate a few large blocks of memory, rather than many small
blocks.

Blocks are not automatically deleted once their pointer goes out of
scope.

This is useful because blocks persist without being explicitly
copied, saving the time taken to copy data.

This is a problem because you have to remember to release the
memory explicitly, otherwise your program’s memory usage may
grow too large.

Philip Blakely (LSC) C++ Introduction 153 / 385

Memory

Memory allocation (heap)

We can request an amount of memory from the OS and have it
return a pointer to a contiguous (uninitialized) block of memory.

int* p = new int; // Allocate memory for a single integer
*p = 8; // Dereferencing
std::cout << *p << std::endl;
delete p; // Free memory

The memory remains allocated until explicitly deleted or the
program exits

(It is up to the OS to free on program exit; Linux and Windows
do, some embedded OSs may not.)

So, it is possible to leak memory by not freeing a pointer to it
when you have finished with the memory.

Copying pointers does not copy the associated memory.

Philip Blakely (LSC) C++ Introduction 154 / 385

Memory

Array allocation (heap)

We can allocate memory for a block of variable size

int s = 100;
int* p = new int[s];
for(int i=0 ; i < s ; i++){
p[i] = i;

}
delete[] p; // Free all 100 ints

Philip Blakely (LSC) C++ Introduction 155 / 385

Memory

Heap memory available outside fn

The following is valid because memory allocated on the heap is not
freed automatically:

int* allocateIntMem(const int a){
int* ptr = new int[a];
return ptr;

}

int* myData = allocateIntMem(10);
myData[0] = 6;
myData[9] = 8;
delete[] myData;

delete frees the memory pointed to by myData, but myData still
holds its original value.

Any attempt to access memory through myData will be invalid
hereafter, and (probably) lead to a seg-fault.

Philip Blakely (LSC) C++ Introduction 156 / 385

Memory

nullptr

There is a C++-literal: nullptr usually used for an undefined
pointer

Trying to dereference this will lead to a segmentation-fault

Usefully, delete nullptr; is valid, and does nothing

This avoids the need for constructs such as

if(p != nullptr){
delete p;

}

or equivalently

if(p){
delete p;
}

Note also that short-cut evaluation means that expressions such as

if(p && *p == 4)

are well-defined since p will not be dereferenced if it is nullptr

Philip Blakely (LSC) C++ Introduction 157 / 385

Memory

Pointer arithmetic

Note that the square bracket notation is equivalent to
dereferencing:
p[0] and *p refer to the same thing.

Arithmetic operations on a pointer are equivalent to []:
p[1] and *(p+1) are equivalent.

Modifying a pointer is acceptable:

for(int i=0 ; i < 10 ; i++){
*p = i;
p = p+1;

}

Adding 1 to a pointer advances it to point to the next item in
memory of the same type.

Note that this causes problems if you later try to delete a
modified pointer. delete must be called on the original pointer
returned by new.

Philip Blakely (LSC) C++ Introduction 158 / 385

Memory

Aliasing

It is very easy to end up with aliasing effects again:

int* p = new int[N];
int* q = p;
q[10] = 10;
std::cout << p[10] << std::endl; // prints 10

And multiple deletes on the same pointer are invalid:

delete[] p;
q[5] = 10; // Invalid
delete[] q; // Invalid

Philip Blakely (LSC) C++ Introduction 159 / 385

Memory

Smart pointers

To ensure that allocated memory is always freed, consider a
shared ptr.

This obeys scope, but can be copied, and the object pointed to is
destroyed when the last pointer to it is deleted.

std::shared ptr<double> p(new double);
*(p.get()) = 9.8;
std::shared ptr<double> q = p;
std::cout << *(q.get()) << std::endl;

and the memory is correctly freed once at the end of the program.

A similar construct is std::unique ptr which only allows a single
pointer to a block of memory to exist.

However, the above only supports new[] from C++17 onwards.

Philip Blakely (LSC) C++ Introduction 160 / 385

Memory

Failed allocation of memory

If you are out of memory, or try to allocate too much memory:

size t bigMemory = 1L << 36;
double* myBigData = new double[bigMemory];

then an exception will be thrown.

If you don’t put any exception-handling code in, then your
program will abort, which is probably what you want.

size t is an unsigned integer big enough to refer to all memory
that might be needed on the current architecture.

So, on a 64-bit system, size t will be 8 bytes (64 bits) in size as
the memory addressing uses 64 bits.

(Note: 1L is required to make 1L << 36 a 64-bit integer.)

Philip Blakely (LSC) C++ Introduction 161 / 385

Memory

Multi-dimensional arrays (heap)

What about allocating multi-dimensional arrays on the heap?

The short answer is that you can’t

The longer answer is that you need to create an Array class that
deals with the access

or allocate firstly a contiguous block of memory and then a set of
pointers to successive rows of that.

Either:

int *a = new int[N*M];
int aIJ = a[N*i + j];

Or:

int *a = new int[N*M];
int **b = new int *[M];
b[0] = a; b[1] = a + N;
int aIJ = b[i][j];

Philip Blakely (LSC) C++ Introduction 162 / 385

Memory

sizeof

If you need to determine how much memory is needed for an array,
you can use sizeof:

size t numBytesReqd = sizeof(double) * 100;

This can also be applied to variables:

int b = 3;
size t sizeB = sizeof(b); // e.g. 4 bytes

Warning, the following does not behave as you might expect for an
array:

double* a = new double[100];
size t aSize = sizeof(a); // 8 bytes (on 64−bit machine)

returning the size of a pointer variable.

The sizeof operator returns a variable of type size t, which is
used whenever the size of an object in memory is required.

Philip Blakely (LSC) C++ Introduction 163 / 385

Function wrappers

Outline

19 Pointers

20 Memory

21 Function wrappers

Philip Blakely (LSC) C++ Introduction 164 / 385

Function wrappers

Function wrappers

We may have the user choose an ODE solver function at run-time

Assume we have two or more functions with a consistent interface:

double euler(double x, double t, double dt){
return x + dt * y(x,t);

}
double rk2(double x, double t, double dt){

// RK2 code here
return x + dt * dy;

}

and we want to call whichever one of these the user has chosen.

Philip Blakely (LSC) C++ Introduction 165 / 385

Function wrappers

Function wrappers ctd

We could have a switch statement every time we need to call one
or the other:

double nextX;
switch(odeSolver){
case ODEsolver::EULER:

nextX = euler(x,t,dt);
break;

case ODEsolver::RK2:
nextX = rk2(x,t,dt);
break;

}

However, if this needs to occur multiple times, then we end up
with multiple copies of this code, and what happens if we want to
add RK4?

Philip Blakely (LSC) C++ Introduction 166 / 385

Function wrappers

Function wrappers

We would like to store a reference to the function:

#include <functional>
std::function<double(double, double, double)> odeSolverFn;
switch(odeSolver){
case ODEsolver::EULER:

odeSolverFn = &euler;
break;

case ODEsolver::RK2:
odeSolverFn = rk2; // & not necessary
break;

}

This is used as:

nextX = odeSolverFn(x,t,dt);

Philip Blakely (LSC) C++ Introduction 167 / 385

Function wrappers

Function wrapper cost

Since the compiler no longer knows which function will be called
at compile-time, this introduces an extra redirection call at
machine-code level

This has a very small computational cost.

Unless you profile your real-world code and find it’s expensive,
don’t worry about the extra cost.

Note that function wrappers have replaced function pointers which
were harder to get right, and less powerful.

In older code, you may see the more confusing:

double (*odeSolverFn)(double, double, double) = &euler;

Philip Blakely (LSC) C++ Introduction 168 / 385

