
Part VII

Object-Oriented Programming

Philip Blakely (LSC) C++ Introduction 195 / 385

OOP

Outline

25 Object-Oriented Programming

26 Member functions

27 Constructors/Destructors

28 More constructors

Philip Blakely (LSC) C++ Introduction 196 / 385

OOP

Object-Oriented Programming

Object-Oriented Programming is a vital part of most complex
programs these days

Although not absolutely necessary for scientific programming, it
will make for far more readable code and make code easier to read
and debug

The essential concepts in OOP are encapsulation and data-hiding.

There are further concepts such as inheritance and polymorphism

This is not a course in OOP, so only a brief introduction to the
concepts will be given

Much of the skill in using OOP is knowing how to partition
concepts into objects/classes; this will not be covered here.

Philip Blakely (LSC) C++ Introduction 197 / 385

OOP

Classes

Simple objects were available in C as a struct.
(short for structure)

A struct is a self-contained package of other types.

The C++ generalized form of these is a class.

Provides names for its member-types

Allows for easy copying/assignment of these objects

For example, a Date class requires three members:

class Date{
public:
int day;
int month;
int year;

};

Within C++ a class is a new type, with all the type-safety features
that implies.

Philip Blakely (LSC) C++ Introduction 198 / 385

OOP

Using classes

void printDate(const Date& d){
std::cout << d.day << "/" << d.month << "/" << d.year <<
std::endl;

}

int main(void){
Date myDeadline;
myDeadline.day = 16;
myDeadline.month = 8;
myDeadline.year = 2024;

printDate(myDeadline);
}

Copying and assignment of classes is implemented automatically
for simple data.

Anything else, e.g. printing, checking for equality, arithmetic
operations, etc. must be explicitly coded by the programmer.

A specific variable of type Date is referred to as an instance of the
Date class.
Philip Blakely (LSC) C++ Introduction 199 / 385

Member functions

Outline

25 Object-Oriented Programming

26 Member functions

27 Constructors/Destructors

28 More constructors

Philip Blakely (LSC) C++ Introduction 200 / 385

Member functions

Member functions

We may want to be able to advance a Date by a single day:
Approach 1:

Date advance(const Date& d){
Date newD = d;
newD.day += 1;
if(newD.day > numDaysInMonth[newD.month]){
newD.day = 1;
newD.month += 1;

}
if(newD.month > 12){
newD.month = 1;
newD.year += 1;

}
return newD;

}

Date tomorrow = advance(today);

However, this approach will result in separate functions not obviously
related to a Date.

Philip Blakely (LSC) C++ Introduction 201 / 385

Member functions

Member functions

It might be better if we could do something like:
myDate.advance();

which would advance myDate by one day.

We can do this as follows:
class Date{
public:
void advance();

};
void Date::advance(){
day += 1;

}

where the advance function knows about the current object that
it is being called on.

The advance function is a member of the Date class.

The day referred to is specific to this object.

Calling advance() on one Date object will not affect any other
Date object
Philip Blakely (LSC) C++ Introduction 202 / 385

Member functions

Access control

As we’ve written it so far, data members of a Date instance are
public.

i.e. any external function can access the members:

d.day = 35;
d.month = 13;

providing invalid data that will cause problems later.

It would be useful if all access to the object’s members had to go
through a Date member function.

Philip Blakely (LSC) C++ Introduction 203 / 385

Member functions

Private

We can do this by making some of the members private:

class Date{
public:
void advance();

private:
int day;
int month;
int year

};

int main(void){
Date d;
d.day = 1; // Compile−time error − day is private
d.advance(); // Allowed since advance() is public

}

In fact, class members are private by default, hence the “public”
in previous slides.

Members of a struct are public by default.

Philip Blakely (LSC) C++ Introduction 204 / 385

Member functions

Access functions

However, we now cannot get any data into the Date object in the
first place.

We can add simple access functions:
// In Date.H
class Date{
public:
int getDay()const;
void setDay(int);

};
// In Date.C
int Date::getDay()const{

return day;
}
void Date::setDay(int d){

day = d;
}

The advantage is that all access to day goes through one function,
and can be checked for errors at this point, without having to
remember to introduce checks elsewhere.
Philip Blakely (LSC) C++ Introduction 205 / 385

Member functions

Private member functions

We may also wish to have private member functions:

class Date{
// Other code goes here

private:
void checkCorrect()const;

};

which could be called from within any other member function:

void Date::setDay(int d){
day = d;
checkCorrect();

}

and the checkCorrect function ensures that the date stored is a
valid one.

Philip Blakely (LSC) C++ Introduction 206 / 385

Member functions

Naming conventions

Member functions cannot have the same names as member data.

An appropriate naming convention should be used. Note that it is
better for the interface to the class (its member functions) to have
memorable names than the internal data.

class Date{
public:
int day()const;

private:
int m day;

};

Philip Blakely (LSC) C++ Introduction 207 / 385

Member functions

Const-ness

You may have noticed the const on the getDay function above.

This indicates that the function does not change any member data
of the Date object (except for any static members)

Any attempt to so within the function is a compile-time error:

int Date::getDay()const{
m month = 1; // Compile error
return m day;

}

Philip Blakely (LSC) C++ Introduction 208 / 385

Member functions

Const-ness ctd

Also, if a Date object has been declared to be constant, then you
cannot call non-const functions on it:

const Date myBirthday = d; // Where d holds a pre−defined Date
// The following is OK:
std::cout << myBirthday.getDay() << "/" <<

myBirthday.getMonth() <<
std::endl;

// Compile−error: setDay does not keep a Date object constant
myBirthday.setDay(12);

Philip Blakely (LSC) C++ Introduction 209 / 385

Constructors/Destructors

Outline

25 Object-Oriented Programming

26 Member functions

27 Constructors/Destructors

28 More constructors

Philip Blakely (LSC) C++ Introduction 210 / 385

Constructors/Destructors

Constructors

Having to write:

Date d;
d.setDay(25);
d.setMonth(12);
d.setYear(2020);

is labourious. It would be easier if we could write:

Date d(25, 12, 2020);

The function that does this is called a constructor.

Philip Blakely (LSC) C++ Introduction 211 / 385

Constructors/Destructors

Constructors

To define a constructor:

class Date{
public:
Date(int, int, int);
// More function prototypes

};

Date::Date(int d, int m, int y){
m day = d;
m month = m;
m year = y;

}

A constructor is a function with the same name as the object it
refers to, and with no return type (not even void).

A class may have multiple constructors taking different
parameters, or even default parameters.

Philip Blakely (LSC) C++ Introduction 212 / 385

Constructors/Destructors

Constructor initializer list

You can also initialize data members outside the constructor
function

This uses an initializer list

Date::Date(int d, int m, int y)
: m day(d), m month(m), m year(y){

}

This is the only way to initialize const members of a class, as they
cannot be modified once a class instance has been constructed.

(A const member could be used for a run-time-sized Array but
whose size cannot be changed later.)

Philip Blakely (LSC) C++ Introduction 213 / 385

Constructors/Destructors

Default constructor

As soon as you create a constructor of your own, the compiler no
longer automatically generates the default constructor.

A default constructor is one that either takes no parameters, or all
its parameters have default values (so it can be called with no
parameters).

An empty function body may be appropriate (but may leave data
members uninitialized), or you may choose to explicitly initialize
member data with default or nonsense values:

Date::Date(){
day = 32;
month = 13;
year = 0;

}

You can also disable the default constructor, to force explicit
initialization of all Dates by:

class Date{ Date() = delete; };

Philip Blakely (LSC) C++ Introduction 214 / 385

Constructors/Destructors

Destructors

If you allocate memory in your constructor, using new, you should
also delete it when the object is destroyed.

This is done in the destructor:

class MyArray{
public:
MyArray(int);
˜MyArray();

private:
double* data;

};
MyArray::MyArray(int n){

data = new double[n];
}
MyArray::˜MyArray(){
delete[] data;

}

Philip Blakely (LSC) C++ Introduction 215 / 385

Constructors/Destructors

Destruction

The data of arr is deleted when arr goes out of scope, i.e. at the
end of the function or block in which it is defined.

int f(){
MyArray a(5);
for(int i=0 ; i < 10 ; i++){

MyArray b(10);
// b.˜MyArray is called at the end of every iteration

}
// a.˜MyArray is called directly after this line

}

The destructor takes no parameters.

(The choice for destructor syntax comes from bitwise NOT.)

Philip Blakely (LSC) C++ Introduction 216 / 385

Constructors/Destructors

Classes and header files

In order to compile code using a class, the compiler needs to know
the data it contains and its member functions.

Therefore, Date.H should contain:

class Date{
public:
int day();

private:
int m day;

};

Then, any .C file that uses the Date class and has
#include "Date.H" will compile correctly.

A separate file Date.C should contain the member function
definitions:

int Date::day(){ return m day; }

Compiling these and linking them as in the previous lecture will
give a complete program.

Philip Blakely (LSC) C++ Introduction 217 / 385

Constructors/Destructors

Heap construction/destruction of classes

To allocate space on the heap for objects of a specific class:

MyArray* a = new MyArray(10);

which allocates a single instance of MyArray and calls its
constructor with an argument 10.

This object then persists until the destructor is explicitly called
using

delete a;

To allocate an array of these, use:

MyArray* a = new MyArray[10];
delete[] a;

This uses the default constructor to initialize the instances. A
default constructor must be available; if not it is a compile-time
error.

Philip Blakely (LSC) C++ Introduction 218 / 385

Constructors/Destructors

Class pointer function call

In order to call a member function of a class, given a pointer to an
instance of that class, use:

Car* myCar = new Car;
myCar−>setNumberPassengers(10);

This is essentially identical to:

Car* myCar = new Car;
(*myCar).setNumberPassengers(10);

(It would be different only if some of these operators were
overloaded oddly.)

Philip Blakely (LSC) C++ Introduction 219 / 385

Constructors/Destructors

Return by reference

Suppose we have a large object stored within a class and need
access to it from outside:

BigObject MyClass::data(){
return myData;

}

The above only gives read access to myData, not
modify/write-access.

It is permissible to return a reference to an object from a function
to avoid the expense of copying:

BigObject& MyClass::data(){
return myData;

}

This may suggest bad design already; write-access to a class’s
internal data is usually not sensible.

Philip Blakely (LSC) C++ Introduction 220 / 385

Constructors/Destructors

Return by reference ctd

The lack of copy is only preserved until the object is allocated to
another variable:

MyClass myObj;
BigObject a = myObj.data(); // Invokes a copy
myObj.data().bigObjFunc(); // Does not invoke a copy.

Note that we have now exposed the contents of myData to outside
its class - possibly bad!

Philip Blakely (LSC) C++ Introduction 221 / 385

Constructors/Destructors

Return by reference ctd

In order to prevent alteration, we should of course return a
constant reference:

const BigObject& MyClass::data(){
return myData;

}

or even

const BigObject& MyClass::data()const{
return myData;

}

which would prevent the call to bigObjFunc() above if it were not
a const member function.

Philip Blakely (LSC) C++ Introduction 222 / 385

More constructors

Outline

25 Object-Oriented Programming

26 Member functions

27 Constructors/Destructors

28 More constructors

Philip Blakely (LSC) C++ Introduction 223 / 385

More constructors

Copy-constructor

The copy-constructor is used in the case:

MyClass a;
MyClass b = a;

i.e. b is constructed by copying a.
(It is also used when passing an object of type MyClass to a
function.)

It is declared as:

class MyClass{
MyClass(const MyClass& c);

};
MyClass::MyClass(const MyClass& c){
// Initialize all members as necessary from c
myInt = c.myInt;

}

Note that a class has access to all private members of any object
of the same type.

Philip Blakely (LSC) C++ Introduction 224 / 385

More constructors

Default copy constructor

If a copy-constructor is not defined, then a default version is
created that copies the object member-by-member, i.e. all
members are copied using their own copy constructors.

This is often the required behaviour, unless the object contains
heap-allocated pointers that would be freed on destruction of an
object.

In this case, the copy-constructor needs to allocate more memory
and copy the data pointed to.

Philip Blakely (LSC) C++ Introduction 225 / 385

More constructors

Copy-assignment

A slightly different version of the above occurs when objects are copied
by assignment:

MyClass a(x, y, z);
MyClass b(u, v, w);

b = a;

Here, the appropriate member function definition is given as:

class MyClass{
MyClass& operator=(const MyClass& c){
// Copy data from c as appropriate
return *this;

}
};

Once again, the default is to copy-assign each member by itself,
but this may need to be altered in the case of heap-allocation.

The this pointer is a pointer to the current object. It is not
usually necessary to use it.

Philip Blakely (LSC) C++ Introduction 226 / 385

More constructors

Class summary

Member functions are typically

actions - do something to this object
read/set functions - get/set information in this object

Member data should usually be private, to avoid unregulated
access

Member functions are typically public - for access from other
objects/functions

although some may be private - for use internally

If you just want a collection of data, then use a struct

A struct is identical to a class with all its members public by
default

Philip Blakely (LSC) C++ Introduction 227 / 385

