
Part IX

Function and operator overloading

Philip Blakely (LSC) C++ Introduction 260 / 385



Function overloading

Outline

33 Function overloading

34 Member function wrappers

35 Member function overloading

36 Operator overloading

Philip Blakely (LSC) C++ Introduction 261 / 385



Function overloading

Function Overloading

Different functions usually have different names, because they
perform different tasks
Sometimes, different functions may perform similar operations
For example, a specialised printing function:
Vector v;
Matrix m;
printVector(v);
printMatrix(m);

C++ allows us to have a consistent interface (somewhat like the
implementation-hiding ideas of OOP), with a single function
print:
void print(const Vector& x);
void print(const Matrix& a);

print(v);
print(m);

where the correct function is called depending on its parameters.
This is called function overloading.
Philip Blakely (LSC) C++ Introduction 262 / 385



Function overloading

Function overloading

At its most basic, function overloading is obvious:

Determine exact types of function parameters
Test these against all visible overloads
Call the function that matches

For more complex cases, C++ has rigorously defined rules

Note that the return type of a function is never taken into account
when determining overloads:

int sum(double, double);
double sum(double, double);

will result in a compiler-error (ambiguous declaration) since the
two functions cannot be separated by their parameter-types alone.

Philip Blakely (LSC) C++ Introduction 263 / 385



Member function wrappers

Outline

33 Function overloading

34 Member function wrappers

35 Member function overloading

36 Operator overloading

Philip Blakely (LSC) C++ Introduction 264 / 385



Member function wrappers

Member function wrappers

It is not immediately trivial to create a wrapper of a member
function:

int MyClass::func(int i)const;

has two extra features associated with it that an ordinary function
does not have:

Firstly, it must know about a MyClass object
Secondly, it has a const modifier.

These imply that the actual form of the function must be
something like:

int func(const MyClass* this, int i);

This is never visible to the programmer, however.

Philip Blakely (LSC) C++ Introduction 265 / 385



Member function wrappers

Member function wrapper

A member function wrapper can be created as:

std::function<int (const MyClass&, int)> funcWrap =
&MyClass::func;

and used as:

MyClass m;
funcWrap(m, i);

This construct can be used when there are multiple member
functions of a class with the same signature.

The & is required in this case (optional for ordinary functions).

Philip Blakely (LSC) C++ Introduction 266 / 385



Member function wrappers

Static member function wrappers

Since static member functions do not require an object when
calling, their type is not tied in to a class:

class MyClass{
public:

static int f(int i);
};
std::function<int (int)> func = &MyClass::f;
j = func(i);

Philip Blakely (LSC) C++ Introduction 267 / 385



Member function overloading

Outline

33 Function overloading

34 Member function wrappers

35 Member function overloading

36 Operator overloading

Philip Blakely (LSC) C++ Introduction 268 / 385



Member function overloading

Member function overloading

Member functions can be overloaded in the same way as ordinary
functions:

class Matrix{
void raiseToPower(int);
void raiseToPower(double);

};

Const-ness is taken into account when performing overload
resolution:

class Vector{
int& getElt(int);
int getElt(int)const;

};

are distinct functions.

Philip Blakely (LSC) C++ Introduction 269 / 385



Member function overloading

Member function overloading ctd

The function called depends on the const-ness of the object on
which the function is called:

const Vector v;
Vector x;
// Calls non−const version, which returns by reference:

x.getElt(3) = 5;
// Calls const−version, which returns by value:

int y = v.getElt(3);
// Not allowed since tries to call const version, which
// doesn’t return by reference

v.getElt(3) = 5;

Philip Blakely (LSC) C++ Introduction 270 / 385



Member function overloading

Overloading virtual functions

Overloading virtual functions is allowed, but may need extra
typing:
class MyBaseClass{
public:

virtual double f(int);
virtual double f(double);

};
class MyClass : public MyBaseClass {
public:

virtual double f(int);
};

f is overloaded within MyBaseClass

The above works normally with polymorphism, i.e. referring to
f(1.0) or f(1) through a pointer of type MyBaseClass calls either
the second or third of the functions as expected.
However, only the f(int) version is called by both:
MyClass a;
a.f(1.5);
a.f(1);

Philip Blakely (LSC) C++ Introduction 271 / 385



Member function overloading

Solving virtual overloading

So, within MyClass, only one version of f exists.

g++ only warns about this if you specify -Woverloaded-virtual

(not part of -Wall -Wextra).

The correct approach is to use:

class MyClass : public MyBaseClass {
public:

virtual double f(int);
using MyBaseClass::f;

};

which brings the base-class’s version of f into scope.

MyClass now has two correctly overloaded functions f

Philip Blakely (LSC) C++ Introduction 272 / 385



Member function overloading

Name mangling

C++ was originally implemented using an intermediary compiler
that converted C++ to plain C.

C does not allow function overloading, so some way of
distinguishing overloaded functions is required

Function parameters are added to the function name to give a
unique function name

e.g. void f(int, double) might become f i d

Name mangling is non-standard (between compilers)

Only really see it at the linking stage.

In Linux, use c++filt -t MangledName to recover actual function
definition.

This also works for types, although you will not see the use for
this until later...

Philip Blakely (LSC) C++ Introduction 273 / 385



Operator overloading

Outline

33 Function overloading

34 Member function wrappers

35 Member function overloading

36 Operator overloading

Philip Blakely (LSC) C++ Introduction 274 / 385



Operator overloading

Operator overloading

One of the very useful (and often abused) features of C++is the
ability to overload operators

For example, if you have a Matrix type you’ve created, you can
allow the following:

Matrix a, b;
// Initialize matrices a and b
Matrix c = a * b;
std::cout << "A x B = " << c << std::endl;

We need to extend the definition of the * and << operators to
allow Matrix objects as arguments.

If you think of an operator as just another function, this is the
obvious extension of function overloading.

Philip Blakely (LSC) C++ Introduction 275 / 385



Operator overloading

Operator overloading

class Matrix{
public:
Matrix operator*(const Matrix& b)const{
Matrix result;
// Use data and b.data to create result.data
return result;

}
private:
std::array<std::array<float,3>,3> data;

};

Note that a member function of Matrix has access to private
members of other Matrix objects.

It is best to have the arguments as passed by const & since this
allows the compiler to optimize out the copy constructor.

Philip Blakely (LSC) C++ Introduction 276 / 385



Operator overloading

More Operator overloading

It is also possible to create operations that take other types:

class Matrix{
public:
Matrix operator*(float x)const;
Matrix& operator*=(float x){
data[0][0] *= x;
return *this;

}
};

which will allow operations of the form

Matrix a; float x;
a = a*x;
a *= x;

but NOT

a = x * a;

Note that the first function does not return by reference, whereas
the second one does.
Philip Blakely (LSC) C++ Introduction 277 / 385



Operator overloading

Non-member operator overloading

Operators may also be defined outside classes:

Matrix operator*(const Matrix& a, const Matrix& b){
Matrix result = a;
result *= b;
return result;

}
Matrix operator/(const Matrix& a, float x){

return result;
}

All operators defined outside classes must take at least one
argument of class-type

Note that these do not return by reference

To reduce copy-paste errors, it is useful to define binary operators
in terms of operate-and-assign operators as above.

Philip Blakely (LSC) C++ Introduction 278 / 385



Operator overloading

Multiple operator overloads

You will need to define multiple versions of the overload:

Matrix operator*(float a, const Matrix& b);
Matrix operator*(const Matrix& a, float b);
Matrix operator*(const Matrix& a, const Matrix& b);

as well as any others for multiplication by a double, for example.

This may be the point at which you resort to macros (or, better,
templates).

Philip Blakely (LSC) C++ Introduction 279 / 385



Operator overloading

Output overloading

The following (defined outside the class) allows a Matrix to be
output to a stream.

std::ostream& operator<<(std::ostream& os, const Matrix& m){
os << m[0][0] << " " << m[0][1] ; // Etc.
return os;

}

A stream is modified when output is sent to it, so must be passed
by reference.

A stream needs to be returned so that the following works:

Matrix m;
std::cout << "My matrix is" << m << std::endl;

or, equivalently:

(((std::cout << "My matrix is ") << m) << std::endl);

where the parentheses are solely to make the separate function
calls clearer.
Philip Blakely (LSC) C++ Introduction 280 / 385



Operator overloading

Other operators

Increment and decrement operators are overloaded as

class Number{
public:
Number& operator++(); // prefix ++
Number operator++(int); // post−fix ++

};

The extra int does not take any value when called, it is only a
dummy parameter to distinguish the overloads.

Note that the prefix ++ returns *this by reference, whereas
post-fix does not return by reference.

Philip Blakely (LSC) C++ Introduction 281 / 385



Operator overloading

Overloading []

The element access operator can be overloaded, taking a single
parameter.

class My5Array{
public:
int operator[](int i)const{

return data[i];
}
int& operator[](int i){
return data[i];

}
private:
std::array<int,5> data;

};

My5Array a;
int g = a[4];
a[3] = 5;

Philip Blakely (LSC) C++ Introduction 282 / 385



Operator overloading

Overloading ()

The function call operator () can be overloaded, taking any
number of parameters at all:

class My2DArray{
int operator()(int i, int j)const{

return data[i][j];
}

};

My2DArray a;
std::cout << a(2,2) << std::endl;

Philip Blakely (LSC) C++ Introduction 283 / 385



Operator overloading

Overloading casting

You can also allow your own classes to be cast to other types,
including built-in types.

class Rational{
public:

operator double()const{
return m numerator / (double)m denominator;

}
}

which would allow a use-case such as:

Rational r(1, 3);
std::cout << r << " ˜= " << (double)r << std::endl;

Giving:

1/3 ˜= 0.33333333

Philip Blakely (LSC) C++ Introduction 284 / 385



Operator overloading

Operator overloading warnings

Always consider whether the syntax that will result is clear
The overloading of left-shift << for output is a good example.

Operator precedence cannot be changed; if operator precedence
makes sense for your class, the overloads should follow that

The following operators cannot be overloaded:
?: ternary operator
. member-access
:: scope-resolution
.* pointer-to-member

Just because you can use overloading, doesn’t mean that you
should.

You cannot alter the number of arguments that an operator takes.

Philip Blakely (LSC) C++ Introduction 285 / 385


