
C++: Practical session 3

1 Description

Write a C++ program to solve the ODE

y = y(t),
dy

dt
≡ f(y, t) =

√
y, y(0) = y0. (1.1)

using the Euler update formula:
yn+1 = yn + (∆t)f(yn, t) (1.2)

where yn = y(n∆t) is a discrete approximation to y(t).
The user should be able to enter T , the maximum t value for which to compute the solution, as well as

the initial value y0 and the time-step ∆t. Suggested values are: y0 = 1, T = 10, ∆t = 0.001.
The function yn(t) should be output to a file so that you can plot it in gnuplot.
Consider carefully what kind of loop you should use. What happens if T/∆t is not an integer? What

happens if this is an integer, n, but n∆t 6= T , as is entirely possible with floating-point arithmetic?
To plot the file ode.dat within gnuplot, do:

gnuplot

plot "ode.dat" using 1:2

If you cannot get gnuplot to work, try using LibreOffice Calc/MS Excel (or other plotting tool).
In case we didn’t reach file-output in the lecture, you can output to the terminal instead, and output

into a file with Bash’s > redirection syntax.

2 Further work:

a) Determine the exact solution (careful with integration constants), and compare to the numerical solution.

b) Experiment with varying the time-step and see how it affects the solution.

c) Implement the 2nd-order Runge-Kutta scheme:

k1 = f(yn, t)

k2 = f(yn + k1∆t, t + ∆t)

yn+1 = yn + 1
2∆t(k1 + k2)

and compare the results to those of Euler.

When implementing this, you might wish to specify f(double x) as a separate function.

d) Calculate the difference between the exact and numerical solutions at t = T and output this.

e) Plot the variation of this error with ∆t.

f) Try solving a different ODE.

1


