Advanced C++

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) Advanced C++ 1/ 217

Part 1

C++11/14/17

Philip Blakely (LSC)

Introduction

Outline

@ Introduction

Philip Blakely (LSC) Advanced C++ 3 /217

Introduction

C++11 was standardized in 2011. You may see references to C++0x
in old documentation.

It incorporates useful constructs from the Boost libraries.

New container types.

°
°

o Lambda functions

o Features geared towards ease of coding and optimization.
°

These lectures assume that you are a reasonably competent

C++ user.
@ Check what version of C++ your compiler defaults to.
o For gcc use the -—std=c++11 flag.

Philip Blakely (LSC) Advanced C++ 4 /217

Introduction

o C++14 was finalised in December 2014, and is largely a series of
fixes and clarifications to the C++11 standard.

@ Occasionally you may see reference to C++1y in old
documentation written before the publication date was known.

e For gcc use the --std=c++14 flag.

e From gcc version 6.1 onwards, C++14 is the default.

Philip Blakely (LSC) Advanced C++ 5 /217

Introduction

o C++17 was finalised in December 2017, and is largely a series of
fixes and clarifications to the C++11 standard.

@ Occasionally you may see reference to C++1z in old documentation
written before the publication date was known.

@ For gcc use the --std=c++17 flag.

@ gcc-8 is feature complete for C++17, but C++14 remains the
default.

Philip Blakely (LSC) Advanced C++ 6 /217

Introduction

References

Bjarne’s guide to differences between C++03 and C++11:
http://wuw.stroustrup.com/C++11FAQ.html

Bjarne Stroustrup, “The C++ Programming Language”, 4th
Edition, Addison Wesley

Effective Modern C++, Scott Meyer, O’Reilly, 2014

http://en.cppreference.com/w/cpp - has clear indication of
which features are in C++03, C++11, C++14, C++17 (and C++20)

See https://gcc.gnu.org/projects/cxx-status.html for list of
features implemented in gcc for each standard.

Philip Blakely (LSC) Advanced C++ 7/ 217

http://www.stroustrup.com/C++11FAQ.html
http://en.cppreference.com/w/cpp
https://gcc.gnu.org/projects/cxx-status.html

Introduction

Standards documents

@ The ISO C++ Standards are published by the International
Organization for Standardization.

The certified standards documents are only available to buy, at
600 GBP each.

However, see https://en.cppreference.com/w/cpp/links for
links to the final working drafts, which are a very good
approximation to the final version.

@ (This is not dissimilar from the way you can make your papers
freely accessible via www.data.cam.ac.uk without violating the
publishing journal’s terms and conditions.)

Philip Blakely (LSC) Advanced C++ 8 /217

https://en.cppreference.com/w/cpp/links
www.data.cam.ac.uk

Introduction

Examples

Virtually every topic in this course has an associated example code
in the Examples directory.

Running make all will compile all tests.

In some cases I have used the macro AVOID_INTENTIONAL _ERRORS
to allow me to check for correct compilation.

make example name will compile without errors.

If you run make EXPOSE_ERRORS=1 example name then this may
show various (expected) errors.

If compiling the later C++14/17 features, you will need to specify:
CXX=/1sc/opt/gcc-8.2.0/bin/g++-8 as well (or some other
compiler with similar support).

Philip Blakely (LSC) Advanced C++ 9 /217

Introduction

Makefile interlude

While writing this part I discovered that Makefiles allow target-specific
variable definitions:

$ (TARGETS) : CXXSTD := —std=c++11
$ (TARGETS14) : CXXSTD := —std=c++14
$(TARGETS17) : CXXSTD := —std=c++17

%$: %.C

$(CXX) $(CXXFLAGS) $(CXXSTD) s$< —o $a@

means that only targets defined in $ (TARGETS14) will have the
-std=c++14 option, and similarly for C++17.

Philip Blakely (LSC) Advanced C++ 10 / 217

Introduction

Detecting C++11

o If you write code that requires C++11 syntax, and someone
accidentally compiles with a C++03 compiler, then they will have a
large number of errors.

@ A simple way to detect whether you have a C++11 compiler is:

#if __cplusplus < 201103L

#error This program requires a C++11 compiler.

#endif
which will error out early on, at the pre-processing stage.

@ The equivalent numbers for all versions are:

e 199711L (C++98 or C++03)
o 201103L (C++11)
o 201402L (C++14)
o 201703L (C++17)

@ These are defined by the C++ standard, so are guaranted to work

(or at least indicate that the compiler claims to be compliant with

that standard).

Philip Blakely (LSC) Advanced C++ 11/ 217

Minor modifications

Outline

e Minor modifications

Philip Blakely (LSC) Advanced C++ 12 / 217

Minor modifications

NULL pointer

@ In C++03 you would use NULL or O to represent an undefined
pointer.

In C++11 you should use nullptr instead.

This provides for better readability and for distinctness in
overloading to accept either an integer or a pointer.

See Examples/null.C

Philip Blakely (LSC) Advanced C++ 13 / 217

Minor modifications

enum classes

o In C++03 we had enums:

enum Colour{Red, Green, Blue};

@ which defines a type Colour at global scope that implicitly
converts to an int:
Colour b = Blue;
int r = Red;

@ In C++11 we have a strongly typed enum class:

enum class ProperColour : char

{ Cyan, Magenta, Yellow, Black };

@ which defines a type ProperColour with its own scope that uses a
char to store its value, but does not implicitly convert to an char.

Philip Blakely (LSC) Advanced C++ 14 / 217

Minor modifications

enum classes ctd

o For example, the following are OK:
ProperColour ¢ = ProperColour::Cyan;
char y = (char)ProperColour::Yellow;

@ The following are not OK:
char ¢ = Cyan;

char c2 = ProperColour::Cyan;
ProperColour m = Magenta;

@ See Examples/enum.C

Philip Blakely (LSC) Advanced C++ 15 / 217

Minor modifications

Template closing brackets

@ A problem you may not have realised you had:
std::vector<std::pair<int, int>> a;

is invalid in C++03.

In C++03 >> is interpreted as a right-shift operator, following the
“maximal munch” principle.

In C++03 you need a space between the two > brackets.

From C++11 the above syntax is valid.

In some (fairly contrived) cases, this may cause code to give
different results under C++11 and C++03.

See http://www.open-std.org/jtcl/sc22/wg21/docs/papers/
2005/n1757 .html

@ See Examples/maxMunch.C.

Philip Blakely (LSC) Advanced C++ 16 / 217

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html

Compile-time constants

Outline

© Compile-time constants

Philip Blakely (LSC) Advanced C++ 17 / 217

Compile-time constants

Constant values

e Template parameters (for example) must have their values known
at compile-time.

@ In C++03 we are restricted to using static const int members
and using recursive templates if we want to do any complex
calculations.

@ In C++11 we can declare a function to be a constexpr, specifying
that it can be evaluated at compile-time:

constexpr int triang(int n){
return (n>1) ? n + triang(n—1) : 1;

@ We can then use it as a template parameter
(Examples/constexpr.C):

template<int D>
struct Vector{

double m_datal[D];
+i

Vector<triang(5)> a;
Philip Blakely (LSC) Advanced C++ 18 / 217

Compile-time constants

Constant values

@ In C++11 there are restrictions to using constexpr:

o It must consist of a single return statement.
e It must not contain any local variables.
o It must not have side-effects, e.g. modifying a global variable.

@ These are somewhat relaxed at C++14.

@ A constexpr function can be used to initialize any static const
member.

Philip Blakely (LSC) Advanced C++ 19 / 217

Compile-time constants

Constant values - non-integral

@ Note that non-integral static const members are now permitted

in C++11, and can be initialized inside the class:

constexpr double expon (double n){
return exp(n);

template<int D>

struct Vector{
static constexpr double m_val = expon (D);

¥

@ See Examples/constexprfloat.C

Philip Blakely (LSC) Advanced C++

20 / 217

Compile-time constants

constexpr functions

@ In C++11 constexpr functions were very restricted in their form,
and essentially had to be a series of arithmetic expressions.
o In C++14 constexpr functions can be any function that does not
contain:
e goto
e try-block
o Uninitialized variables or static variables.
and does not require the evaluation of
undefined behaviour,
e lambda expressions,
o exception handling (catch/throw)
e new, delete, dynamic_cast, and similar.

These could be in the function, but not be part of the execution
path followed on evaluation.

o For the full list see
https://isocpp.org/files/papers/N3652.html

Philip Blakely (LSC) Advanced C++ 21 /217

https://isocpp.org/files/papers/N3652.html

Compile-time constants

constexpr functions

@ Therefore, from C++14 we can have:

constexpr int factorial (int n){

int £ = 1;
for(int x=1 ; x <=n ; x++){
£ *= x;

return £f;
}
@ See constexpr_14.C for full example.

@ This includes an example of signed char overflow that I think
should fail to compile (since undefined behaviour should not be
permitted), although gcc-8 and clang-6 allow it.

Philip Blakely (LSC) Advanced C++ 22 /217

Object Initialization

Outline

@ Object Initialization

Philip Blakely (LSC) Advanced C++ 23 / 217

Object Initialization

Uniform initialization

o If we want to initialize members of a class at construction time, we
can use:

struct A{
double x;
double vy;

}i

struct B{
B() : af{1.0, 3.1}, c{4.2}
{
}

A a;
double c;

}i

@ where previously we would have had to initialize the elements of a
within the body of B(), or via a constructor for A.
@ This brings improvements for initializing const member data.

Philip Blakely (LSC) Advanced C++ 24 /217

Object Initialization

Uniform initialization

o Further, we can initialize elements of a newly allocated array:
A% data = new A[2]{{1.0, 9.8}, {3.2, 9.1}};

although this is not very well self-documenting.

@ Sece Examples/uniform init.C for full details.

Philip Blakely (LSC) Advanced C++ 25 / 217

Object Initialization

Initializer lists

o In C++03 initializing a std: :vector of values was annoying:

std::vector<int> a(4);
al0] = 1; alll = 2; al2] = 3; al3] = 5;

(Even initializing from int a2[4] = {1,2,3,5} is awkward.)

@ There is an easier way in C++11:
std::vector<int> a{l, 2, 3, 5};

@ This works for std: :1list as well.
@ Similarly, for a std: :map:
std::map<int,double> b{ {1, M.p1}, {2, M.E}, {6, 9.80665} };

which is using uniform initialization for individual std: :pair
elements, and an initializer list overall.

@ See Examples/init-1list.C

Philip Blakely (LSC) Advanced C++ 26 / 217

Object Initialization

Initializer list constructors

@ How can you use this syntax in your own constructors?

e We would like to have:
Matrix rotate{{cos(theta), —sin(theta)},
{+sin(theta), cos(theta)}};

@ C++11 provides a special type which is passed to constructors:
std::initializer_list, requiring the header
#include <initializer list>

o This acts as a generic container, which can be iterated over, with
the bare minimum of begin(), end(), size()

Philip Blakely (LSC) Advanced C++ 27 / 217

Object Initialization

Initializer list constructors

For a 2 x 2 matrix class:

Matrix::Matrix(std::initializer_list<
std::pair<double, double>> args){
size_t i=0;
for (auto it = args.begin() ; it !'= args.end() ; ++it, ++i){
data[1]1[0] (xit) . first;
data[i][1] (xit) .second;
}
}

Matrix m{{0, 1}, {3, 4}};

(auto will be introduced shortly.)
@ For each pair of doubles in the provided list, we set the elements
of data[2] [2].
@ See Examples/init-1ist.C
@ This could be extended to generic-sized matrices via an
initializer_list<initializer_list<double>>
@ See Examples/init-list-general.C

Philip Blakely (LSC) Advanced C++ 28 / 217

Type short-hands

Outline

e Type short-hands

Philip Blakely (LSC) Advanced C++

Type short-hands

Automatic type declarations

@ Consider the following C++03 code:

int countPassengers (const std::list<const Vehicle*x>& vehicles){

int numPass = 0;
for (std::list<const Vehiclex>::const_iterator
it = vehicles.begin(); it != vehicles.end(); ++it){
numPass += it—>numPass();
return numPass;

@ The type of it is complicated to type, and adds length to the code
line without adding useful information.

o In C++11 we can type:
for (auto it = vehicles.begin() ;

it != vehicles.end() ; ++it){

@ The auto keyword declares the variable it to be the exact type on
the right of the equality.

o (For an even shorter approach see later slides.)

Philip Blakely (LSC) Advanced C++ 30 / 217

Type short-hands

Automatic type declarations ctd

@ The std: :max function takes the form:
template<typename T> max(const T& tl, const T& t2){ ... }

which causes an error if you try to call std: :max(1, 2.0).
@ The solution is to use std: :max<double>(1, 2.0).
o Consider trying to write your own version:

template<typename T1l, typename T2>
TYPE max (const Tl& tl, const T2& t2){
return (tl > t2) 2 tl : t2;

}

@ The problem is: what goes in place of the TYPE?

o It can’t be T1 or T2 themselves.

@ We can use typename std::common_type<T1l, T2>::type

@ This is defined to be the resulting type of (true) 7 t1 : t2.
o (Strictly it’s (true) ? declval<T1>() : declval<T2>())

@ See Examples/max.C

Philip Blakely (LSC) Advanced C++ 31 /217

Type short-hands

Automatic type declarations ctd

@ A similar problem to the above is trying to write:

template<typename T, typename S>
?? operatorx*(const std::vector<I>& v, const S& s)

i.e. multiplication of a vector class with elements of type T by a
scalar of type S.
o What if T = int and S = double?

@ You could start using std: : common_type but this may not work if
you have your own types.

e For example, consider a vector containing elements of type
Matrix that all need to be multiplied by a scalar.

@ std::common_type is not defined for this.

Philip Blakely (LSC) Advanced C++ 32 /217

Type short-hands

Automatic type declarations ctd

@ The solution is auto combined with decltype:

template<typename T, typename S>

auto operator* (const std::vector<T>& v, const S& s) —>

std::vector<decltype (T{} * s{})> { ... }

e This syntax declares the result to be a std: :vector of the type
that would result from the product of scalars of types T and S.

o Equivalently, use decltype(v[0] * s); the function parameters
can be used, hence this has to come at the end of the line.

@ See Examples/vector.C

Philip Blakely (LSC) Advanced C++ 33 /217

