
Advanced C++

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) Advanced C++ 1 / 217

Part I

C++11/14/17

Philip Blakely (LSC) Advanced C++ 2 / 217

Introduction

Outline

1 Introduction

2 Minor modifications

3 Compile-time constants

4 Object Initialization

5 Type short-hands

Philip Blakely (LSC) Advanced C++ 3 / 217

Introduction

C++11

C++11 was standardized in 2011. You may see references to C++0x
in old documentation.

It incorporates useful constructs from the Boost libraries.

New container types.

Lambda functions

Features geared towards ease of coding and optimization.

These lectures assume that you are a reasonably competent
C++ user.

Check what version of C++ your compiler defaults to.

For gcc use the --std=c++11 flag.

Philip Blakely (LSC) Advanced C++ 4 / 217

Introduction

C++14

C++14 was finalised in December 2014, and is largely a series of
fixes and clarifications to the C++11 standard.

Occasionally you may see reference to C++1y in old
documentation written before the publication date was known.

For gcc use the --std=c++14 flag.

From gcc version 6.1 onwards, C++14 is the default.

Philip Blakely (LSC) Advanced C++ 5 / 217

Introduction

C++17

C++17 was finalised in December 2017, and is largely a series of
fixes and clarifications to the C++11 standard.

Occasionally you may see reference to C++1z in old documentation
written before the publication date was known.

For gcc use the --std=c++17 flag.

gcc-8 is feature complete for C++17, but C++14 remains the
default.

Philip Blakely (LSC) Advanced C++ 6 / 217

Introduction

References

Bjarne’s guide to differences between C++03 and C++11:
http://www.stroustrup.com/C++11FAQ.html

Bjarne Stroustrup, “The C++ Programming Language”, 4th
Edition, Addison Wesley

Effective Modern C++, Scott Meyer, O’Reilly, 2014

http://en.cppreference.com/w/cpp - has clear indication of
which features are in C++03, C++11, C++14, C++17 (and C++20)

See https://gcc.gnu.org/projects/cxx-status.html for list of
features implemented in gcc for each standard.

Philip Blakely (LSC) Advanced C++ 7 / 217

http://www.stroustrup.com/C++11FAQ.html
http://en.cppreference.com/w/cpp
https://gcc.gnu.org/projects/cxx-status.html

Introduction

Standards documents

The ISO C++ Standards are published by the International
Organization for Standardization.

The certified standards documents are only available to buy, at
600 GBP each.

However, see https://en.cppreference.com/w/cpp/links for
links to the final working drafts, which are a very good
approximation to the final version.

(This is not dissimilar from the way you can make your papers
freely accessible via www.data.cam.ac.uk without violating the
publishing journal’s terms and conditions.)

Philip Blakely (LSC) Advanced C++ 8 / 217

https://en.cppreference.com/w/cpp/links
www.data.cam.ac.uk

Introduction

Examples

Virtually every topic in this course has an associated example code
in the Examples directory.

Running make all will compile all tests.

In some cases I have used the macro AVOID INTENTIONAL ERRORS

to allow me to check for correct compilation.

make example name will compile without errors.

If you run make EXPOSE ERRORS=1 example name then this may
show various (expected) errors.

If compiling the later C++14/17 features, you will need to specify:
CXX=/lsc/opt/gcc-8.2.0/bin/g++-8 as well (or some other
compiler with similar support).

Philip Blakely (LSC) Advanced C++ 9 / 217

Introduction

Makefile interlude

While writing this part I discovered that Makefiles allow target-specific
variable definitions:

$(TARGETS): CXXSTD := −std=c++11
$(TARGETS14): CXXSTD := −std=c++14
$(TARGETS17): CXXSTD := −std=c++17
%: %.C

$(CXX) $(CXXFLAGS) $(CXXSTD) $< −o $@

means that only targets defined in $(TARGETS14) will have the
-std=c++14 option, and similarly for C++17.

Philip Blakely (LSC) Advanced C++ 10 / 217

Introduction

Detecting C++11

If you write code that requires C++11 syntax, and someone
accidentally compiles with a C++03 compiler, then they will have a
large number of errors.

A simple way to detect whether you have a C++11 compiler is:
#if cplusplus < 201103L
#error This program requires a C++11 compiler.
#endif

which will error out early on, at the pre-processing stage.
The equivalent numbers for all versions are:

199711L (C++98 or C++03)
201103L (C++11)
201402L (C++14)
201703L (C++17)

These are defined by the C++ standard, so are guaranted to work
(or at least indicate that the compiler claims to be compliant with
that standard).

Philip Blakely (LSC) Advanced C++ 11 / 217

Minor modifications

Outline

1 Introduction

2 Minor modifications

3 Compile-time constants

4 Object Initialization

5 Type short-hands

Philip Blakely (LSC) Advanced C++ 12 / 217

Minor modifications

NULL pointer

In C++03 you would use NULL or 0 to represent an undefined
pointer.

In C++11 you should use nullptr instead.

This provides for better readability and for distinctness in
overloading to accept either an integer or a pointer.

See Examples/null.C

Philip Blakely (LSC) Advanced C++ 13 / 217

Minor modifications

enum classes

In C++03 we had enums:

enum Colour{Red, Green, Blue};

which defines a type Colour at global scope that implicitly
converts to an int:

Colour b = Blue;
int r = Red;

In C++11 we have a strongly typed enum class:

enum class ProperColour : char
{ Cyan, Magenta, Yellow, Black };

which defines a type ProperColour with its own scope that uses a
char to store its value, but does not implicitly convert to an char.

Philip Blakely (LSC) Advanced C++ 14 / 217

Minor modifications

enum classes ctd

For example, the following are OK:

ProperColour c = ProperColour::Cyan;
char y = (char)ProperColour::Yellow;

The following are not OK:

char c = Cyan;
char c2 = ProperColour::Cyan;
ProperColour m = Magenta;

See Examples/enum.C

Philip Blakely (LSC) Advanced C++ 15 / 217

Minor modifications

Template closing brackets

A problem you may not have realised you had:

std::vector<std::pair<int,int>> a;

is invalid in C++03.

In C++03 >> is interpreted as a right-shift operator, following the
“maximal munch” principle.

In C++03 you need a space between the two > brackets.

From C++11 the above syntax is valid.

In some (fairly contrived) cases, this may cause code to give
different results under C++11 and C++03.

See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2005/n1757.html

See Examples/maxMunch.C.

Philip Blakely (LSC) Advanced C++ 16 / 217

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html

Compile-time constants

Outline

1 Introduction

2 Minor modifications

3 Compile-time constants

4 Object Initialization

5 Type short-hands

Philip Blakely (LSC) Advanced C++ 17 / 217

Compile-time constants

Constant values

Template parameters (for example) must have their values known
at compile-time.
In C++03 we are restricted to using static const int members
and using recursive templates if we want to do any complex
calculations.
In C++11 we can declare a function to be a constexpr, specifying
that it can be evaluated at compile-time:

constexpr int triang(int n){
return (n>1) ? n + triang(n−1) : 1;

}

We can then use it as a template parameter
(Examples/constexpr.C):

template<int D>
struct Vector{
double m data[D];

};

Vector<triang(5)> a;
Philip Blakely (LSC) Advanced C++ 18 / 217

Compile-time constants

Constant values

In C++11 there are restrictions to using constexpr:

It must consist of a single return statement.
It must not contain any local variables.
It must not have side-effects, e.g. modifying a global variable.

These are somewhat relaxed at C++14.

A constexpr function can be used to initialize any static const

member.

Philip Blakely (LSC) Advanced C++ 19 / 217

Compile-time constants

Constant values - non-integral

Note that non-integral static const members are now permitted
in C++11, and can be initialized inside the class:

constexpr double expon(double n){
return exp(n);

}
template<int D>
struct Vector{
static constexpr double m val = expon(D);

};

See Examples/constexprfloat.C

Philip Blakely (LSC) Advanced C++ 20 / 217

Compile-time constants

constexpr functions

In C++11 constexpr functions were very restricted in their form,
and essentially had to be a series of arithmetic expressions.
In C++14 constexpr functions can be any function that does not
contain:

goto

try-block
Uninitialized variables or static variables.

and does not require the evaluation of
undefined behaviour,
lambda expressions,
exception handling (catch/throw)
new, delete, dynamic cast, and similar.

These could be in the function, but not be part of the execution
path followed on evaluation.

For the full list see
https://isocpp.org/files/papers/N3652.html

Philip Blakely (LSC) Advanced C++ 21 / 217

https://isocpp.org/files/papers/N3652.html

Compile-time constants

constexpr functions

Therefore, from C++14 we can have:

constexpr int factorial(int n){
int f = 1;
for(int x=1 ; x <= n ; x++){
f ∗= x;

}
return f;

}

See constexpr 14.C for full example.

This includes an example of signed char overflow that I think
should fail to compile (since undefined behaviour should not be
permitted), although gcc-8 and clang-6 allow it.

Philip Blakely (LSC) Advanced C++ 22 / 217

Object Initialization

Outline

1 Introduction

2 Minor modifications

3 Compile-time constants

4 Object Initialization

5 Type short-hands

Philip Blakely (LSC) Advanced C++ 23 / 217

Object Initialization

Uniform initialization

If we want to initialize members of a class at construction time, we
can use:

struct A{
double x;
double y;

};

struct B{
B() : a{1.0, 3.1}, c{4.2}
{
}

A a;
double c;

};

where previously we would have had to initialize the elements of a
within the body of B(), or via a constructor for A.

This brings improvements for initializing const member data.

Philip Blakely (LSC) Advanced C++ 24 / 217

Object Initialization

Uniform initialization

Further, we can initialize elements of a newly allocated array:

A∗ data = new A[2]{{1.0, 9.8}, {3.2, 9.1}};

although this is not very well self-documenting.

See Examples/uniform init.C for full details.

Philip Blakely (LSC) Advanced C++ 25 / 217

Object Initialization

Initializer lists

In C++03 initializing a std::vector of values was annoying:

std::vector<int> a(4);
a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 5;

(Even initializing from int a2[4] = {1,2,3,5} is awkward.)

There is an easier way in C++11:

std::vector<int> a{1, 2, 3, 5};

This works for std::list as well.

Similarly, for a std::map:

std::map<int,double> b{ {1, M PI}, {2, M E}, {6, 9.80665} };

which is using uniform initialization for individual std::pair
elements, and an initializer list overall.

See Examples/init-list.C

Philip Blakely (LSC) Advanced C++ 26 / 217

Object Initialization

Initializer list constructors

How can you use this syntax in your own constructors?

We would like to have:

Matrix rotate{{cos(theta), −sin(theta)},
{+sin(theta), cos(theta)}};

C++11 provides a special type which is passed to constructors:
std::initializer list, requiring the header
#include <initializer list>

This acts as a generic container, which can be iterated over, with
the bare minimum of begin(), end(), size()

Philip Blakely (LSC) Advanced C++ 27 / 217

Object Initialization

Initializer list constructors

For a 2× 2 matrix class:
Matrix::Matrix(std::initializer list<

std::pair<double, double>> args){
size t i=0;
for(auto it = args.begin() ; it != args.end() ; ++it, ++i){
data[i][0] = (∗it).first;
data[i][1] = (∗it).second;

}
}

Matrix m{{0, 1}, {3, 4}};

(auto will be introduced shortly.)

For each pair of doubles in the provided list, we set the elements
of data[2][2].

See Examples/init-list.C

This could be extended to generic-sized matrices via an
initializer list<initializer list<double>>

See Examples/init-list-general.C

Philip Blakely (LSC) Advanced C++ 28 / 217

Type short-hands

Outline

1 Introduction

2 Minor modifications

3 Compile-time constants

4 Object Initialization

5 Type short-hands

Philip Blakely (LSC) Advanced C++ 29 / 217

Type short-hands

Automatic type declarations

Consider the following C++03 code:
int countPassengers(const std::list<const Vehicle∗>& vehicles){
int numPass = 0;
for(std::list<const Vehicle∗>::const iterator

it = vehicles.begin(); it != vehicles.end(); ++it){
numPass += it−>numPass();

}
return numPass;

}

The type of it is complicated to type, and adds length to the code
line without adding useful information.

In C++11 we can type:
for(auto it = vehicles.begin() ;

it != vehicles.end() ; ++it){

The auto keyword declares the variable it to be the exact type on
the right of the equality.

(For an even shorter approach see later slides.)

Philip Blakely (LSC) Advanced C++ 30 / 217

Type short-hands

Automatic type declarations ctd

The std::max function takes the form:
template<typename T> max(const T& t1, const T& t2){ ... }

which causes an error if you try to call std::max(1, 2.0).

The solution is to use std::max<double>(1, 2.0).

Consider trying to write your own version:
template<typename T1, typename T2>
TYPE max(const T1& t1, const T2& t2){
return (t1 > t2) ? t1 : t2;

}

The problem is: what goes in place of the TYPE?

It can’t be T1 or T2 themselves.

We can use typename std::common type<T1, T2>::type

This is defined to be the resulting type of (true) ? t1 : t2.

(Strictly it’s (true) ? declval<T1>() : declval<T2>())

See Examples/max.C

Philip Blakely (LSC) Advanced C++ 31 / 217

Type short-hands

Automatic type declarations ctd

A similar problem to the above is trying to write:

template<typename T, typename S>
?? operator∗(const std::vector<T>& v, const S& s)

i.e. multiplication of a vector class with elements of type T by a
scalar of type S.

What if T = int and S = double?

You could start using std::common type but this may not work if
you have your own types.

For example, consider a vector containing elements of type
Matrix that all need to be multiplied by a scalar.

std::common type is not defined for this.

Philip Blakely (LSC) Advanced C++ 32 / 217

Type short-hands

Automatic type declarations ctd

The solution is auto combined with decltype:

template<typename T, typename S>

auto operator∗(const std::vector<T>& v, const S& s) −>

std::vector<decltype(T{} ∗ S{})> { ... }

This syntax declares the result to be a std::vector of the type
that would result from the product of scalars of types T and S.

Equivalently, use decltype(v[0] * s); the function parameters
can be used, hence this has to come at the end of the line.

See Examples/vector.C

Philip Blakely (LSC) Advanced C++ 33 / 217

