
Part III

C++11/14/17 continued

Philip Blakely (LSC) Advanced C++ 61 / 217



Constructors, destructors, and virtual functions

Outline

10 Constructors, destructors, and virtual functions

Philip Blakely (LSC) Advanced C++ 62 / 217



Constructors, destructors, and virtual functions

Delegated constructor

In C++03, if there is common code between constructors, you have
to create an init() or similar function:

class Car{
Car(){
allocateSpace();

}
Car(const Car& c){
allocateSpace();
// Now copy values from c

}
void allocateSpace(){ ... }

};

You cannot call a constructor from another constructor.

Philip Blakely (LSC) Advanced C++ 63 / 217



Constructors, destructors, and virtual functions

Delegated constructor

In C++11, we can do the following:

class Car{
Car(){
// Allocate space ...
// Throw any necessary exceptions

}
Car(const Car& c) : Car(){
// Space already allocated by default constructor
// Now copy values from c

}
};

That is, we call the constructor of an empty Car from the
copy-constructor.

This is now somewhat cleaner.

Philip Blakely (LSC) Advanced C++ 64 / 217



Constructors, destructors, and virtual functions

Disabling default methods

Recall that C++ defines default constructors, copy-constructors,
copy-assignments, move operators, move-assignment operators,
and destructors as needed, for any class you define.
In some cases this is undesired behaviour as it permits unexpected
code.
In C++11 you can disable the creation of these:

class Rational{
public:
// Initialise to n/1
Rational(int n) : num(n), denom(1) { }
// Initialise to n/d
Rational(int n, int d) : num(n), denom(d) { }
// Uninitialized Rational makes no sense.
Rational() = delete;

private:
int num; int denom;

};
int main(void){
Rational a; // Invalid

}
Philip Blakely (LSC) Advanced C++ 65 / 217



Constructors, destructors, and virtual functions

Explicitly enabling default methods

Conversely, you may have written a non-default constructor (or
other method), but want the default constructor behaviour as well:

class B{
public:
B(int x) : data(x) {}
B() = default;

private:
int data;

}
B b; // Only legal because of = default line.

This makes it explicitly obvious that you are relying on the default
behaviour, not anything subtlely different.

Without the B() = default; the compiler would not define this
constructor.

Philip Blakely (LSC) Advanced C++ 66 / 217



Constructors, destructors, and virtual functions

Virtual functions

Virtual functions are necessary for polymorphic classes.

We can specify in the base class that a function is virtual and then
functions in derived classes are marked as override:

class Vehicle{
public:
virtual void turnIgnition(bool)const;

};

class Car : public Vehicle{
public:
void turnIgnition(bool)const override;

};

It is an error to specify override for a function that is not
overriding another one.

The main reason for this syntax is clarity for the developer about
the intent of the class/function.

Philip Blakely (LSC) Advanced C++ 67 / 217



Constructors, destructors, and virtual functions

Final functions

Sometimes we want to prevent virtual functions from being
overridden.

class Car : public Vehicle{
public:
virtual void turnIgnition(bool)const final;

};
class FordPrefect : public Car{
public:
void turnIgnition(bool)const override; // Error

};

We have prevented any further derived classes from Car from
overriding the turnIgnition function.
This may provide some performance improvement, because the
compiler knows that car->turnIgnition(true) always calls
Car::turnIgnition, never any overridden version.
This improvement is unlikely to be important in practice, though;
measure if you think it is important.

Philip Blakely (LSC) Advanced C++ 68 / 217



Constructors, destructors, and virtual functions

Final classes

Sometimes we want to prevent classes from being derived from.

class Car final : public Vehicle{
...

};

Now, no class can derive from Car.

For both uses of final, only use it if it makes sense from a design
perspective, i.e. if there is a logical reason why no one should ever
derive from the class, or override a function further.

See Examples/final.C

Philip Blakely (LSC) Advanced C++ 69 / 217



Part IV

C++11/14/17

Philip Blakely (LSC) Advanced C++ 70 / 217



Compile-time checks

Outline

11 Compile-time checks

12 Lambdas and functors

13 Shared pointers

14 Regular expressions

15 Templating conditions

Philip Blakely (LSC) Advanced C++ 71 / 217



Compile-time checks

Static assert

When developing complex templated classes, you will often make
assumptions on the templated-over types that need to be checked.
If they are not checked, they will either lead to screeds of
compiler-errors or weird run-time behaviour.
Use static assert: (See Examples/static assert.C)

template<int D>
class A{

static assert(D >= 0, "D must be positive");
};
int main(void){
A<+1> a;
A<−1> b;

}

This will cause a compile error:
static assert.C: In instantiation of c l a s s A<−1> :
static assert.C:10:9: required from here
static assert.C:4:3: error: static assertion failed:

D must be positive

Philip Blakely (LSC) Advanced C++ 72 / 217



Compile-time checks

Static assert ctd

The expression for static assert must be capable of being
evaluated at compile-time.

If it is not, the compiler will complain.

For example, the following is not valid:

int e = 0;
template<int D>
class A{

static assert(e >= 0, "e must be positive");
};

(although using const int e would be OK).

The previous example is very simple; more complex tests can check
that a template parameter is an arithmetic type, for example.

Philip Blakely (LSC) Advanced C++ 73 / 217



Lambdas and functors

Outline

11 Compile-time checks

12 Lambdas and functors

13 Shared pointers

14 Regular expressions

15 Templating conditions

Philip Blakely (LSC) Advanced C++ 74 / 217



Lambdas and functors

Lambda functions

In C++03 we had to create functors, which were classes with an
operator() overload, and could therefore act as a function.

In C++11 we can create functors in-place, called lambda functions.

std::vector<int> a{ −1, 5, 10, −9, 12, 3 };
int cutoff = 5;
std::for each(a.begin(), a.end(),
[cutoff](int x){if(x < cutoff) std::cout << x << ",";}

);

will only display values in a that are less than the cut-off 5.
To unpack the lambda function:

Variables from the external scope needed in the lambda function
have to be captured: [cutoff]
If we do not need to capture any variables, specify [].
The list-member has to be passed to the lambda function: (int x)

(The syntax of for each requires that the functor take a single
parameter, of the element type.)
The remainder of the function body is in {}.

Philip Blakely (LSC) Advanced C++ 75 / 217



Lambdas and functors

Lambda functions ctd

So far, this looks overly complicated; the same could be achieved
with a for loop.

However, we can use a different algorithm:

std::transform(a.begin(), a.end(), b.begin(),
[cutoff](int x){return (x < cutoff) ? x : 0;}
);

which copies a into b, except that it replaces values larger than
cutoff with zeros.

Or:

std::sort(a.begin(), a.end(),
[](int a, int b){return (a % 10 < b % 10);}

);

to sort a according to the units-digits of its elements.

See Examples/lambda.C

Philip Blakely (LSC) Advanced C++ 76 / 217



Lambdas and functors

Lambda functions ctd

In some cases lambda functions can make the code more compact
and easy to read.

In some cases they can make it substantially more complicated to
read.

A few extra syntax notes:
The capture list can be given as

[&]: all variables captured by reference, or
[&, a, b]: captures all local variables other than a and b by
reference, or
[=]: all variables captured by value, or
[=, &a, &b]: captures all local variables by value except for a and
b which are captured by reference.

If there are no parameters to pass to the lambda function, the ()

can be omitted.
Parameter values are captured at the point where the lambda
function is created.

Philip Blakely (LSC) Advanced C++ 77 / 217



Lambdas and functors

Functors

In the first lecture series we discovered function pointers and
user-defined functors, but never combined the two.

C++11 makes this easier with std::function

This allows us to create functors with particular signatures from
existing functions.

Simple functionality:

#include <functional>
double operate(double x, double y){
return x + 2∗y;

}

std::function<double(double, double)> op = operate;
std::cout << "operate(3.2, 4.3) = " << op(3.2, 4.3);

Philip Blakely (LSC) Advanced C++ 78 / 217



Lambdas and functors

Functors

We can also bind some of the parameters to fixed values:

std::function<double(double)> op2 =
std::bind(operate, std::placeholders:: 1, 4.5);

std::cout << "operate(1, 4.5) = " << op2(1) << std::endl;

op2 is now a function that takes a single parameter x, and
evaluates operate(x, 4.5).

We can also repeat placeholders, to form a functor of a different
type:

std::function<double(double)> op3 =
std::bind(operate, std::placeholders:: 1,

std::placeholders:: 1);

std::cout << "operate(1, 1) = " << op3(1) << std::endl;

Philip Blakely (LSC) Advanced C++ 79 / 217



Lambdas and functors

Functors for member functions

We can even do something similar for member functions:

struct Object{
double func(double x, double y)const {
return x + y ∗ data;

}

double data;
};

Object o;
o.data = 10;

std::function<double(double)> op4 =
std::bind(std::mem fn(&Object::func),

&o, std::placeholders:: 1, 3.0);

std::cout << "o.func(4, 3) = " << op4(4) << std::endl;

See Examples/function.C

Philip Blakely (LSC) Advanced C++ 80 / 217



Lambdas and functors

Functors for member functions

Note that the first parameter is a pointer to an Object. This is
the object that will be acted on.

The class pointer could also be a placeholder.

Note that once you have a std::function<double(double)>, it
doesn’t matter what the contained function is; it can be copied
around arbitrarily.

However, any pointers to objects are stored as pointers, so if the
object changes, the action of the functor could also change.

Further, passing around an object pointer inside a functor may
lead to surprising side-effects. (See Examples/function.C, and
the updateData() and func() calls.

Using functors introduces an extra level of overhead; if using them
makes your code clearer, then do so unless/until you discover that
they are a bottleneck.

Philip Blakely (LSC) Advanced C++ 81 / 217



Shared pointers

Outline

11 Compile-time checks

12 Lambdas and functors

13 Shared pointers

14 Regular expressions

15 Templating conditions

Philip Blakely (LSC) Advanced C++ 82 / 217



Shared pointers

Shared pointers

In some cases you may allocate memory that needs to be referred
to by multiple objects, any of which may be deleted at any time.

In order not to leak memory, the last object to be deleted should
also free the memory.

For example, consider an Array object that allows shallow copies
to be made, and/or sub-Arrays to be created:

Array shrinkArray(const Array& a){
Box r = a.extent();
Array b = a(shrink(region, 1));
return b;

}

In order to avoid pointless copying of data, line 3 makes b refer to
the same block of memory as a.

(Subject to b covering a smaller grid than a, i.e. clever indexing
has to be employed within element access to b).

Philip Blakely (LSC) Advanced C++ 83 / 217



Shared pointers

Shared pointers

You can use a std::shared ptr to handle the allocated memory.
This includes a reference counter that ensures the memory pointed
to is freed when its last instance goes out of scope.

struct A{
std::shared ptr<int> data;
A(){
data = std::shared ptr<int>(new int[10],

std::default delete<int[]>());
}
A(const A& a){
data = a.data;

}
˜A(){
data.reset();
data = nullptr;

}
int& operator[](int i){
return data[i];

}
};

Philip Blakely (LSC) Advanced C++ 84 / 217



Shared pointers

Shared pointers

A std::shared ptr will use the delete operator on its contained
type by default; if a different destructor is required, supply it at
construction time, hence the std::default delete<int[]>()

above.

Strictly, the code in the destructor is not needed; it just causes the
pointer to be freed (if it’s the last instance holding the pointer),
and then set to the null pointer.

(However, it is needed for the example code
Examples/shared ptr.C, which calls the destructor explicitly.)

Detailed explanation of what happens in various cases can be
found in the example code.

The shared ptr implements the operations you would expect from
a normal pointer: [] -> * conversion to (bool)

Philip Blakely (LSC) Advanced C++ 85 / 217



Shared pointers

Shared pointers

If new int[10] throws an exception, the code given may leak.
However, there is no simple solution until C++17.

At C++17, the following works correctly:

std::shared ptr<int[]> a(new int[10])

as the delete[] operator is used when it goes out of scope.

Philip Blakely (LSC) Advanced C++ 86 / 217



Regular expressions

Outline

11 Compile-time checks

12 Lambdas and functors

13 Shared pointers

14 Regular expressions

15 Templating conditions

Philip Blakely (LSC) Advanced C++ 87 / 217



Regular expressions

Regular expressions

You may have used regular expressions within Bash, Emacs,
vi(m), etc.

They are now available in C++.

On the whole, you should not be using regular expressions in
scientific programs; settings files should be parsed using an
external library.

Various regular expression notations are available, the default is a
variant of ECMA-262 (similar to that used in JavaScript).

Alternatives are those used by awk, grep, POSIX, Extended
POSIX.

A single, reasonably complex, example will suffice.

Philip Blakely (LSC) Advanced C++ 88 / 217



Regular expressions

Regular expressions

Examples/regex.C:

#include <regex>
int main(void){

std::string text = "It was the best of times; it was the
worst of times.";

std::regex pat("([[:alpha:]]∗)st ");
std::smatch sm;
while(std::regex search(text, sm, pat)){
std::cout << sm.str() << " sub−expression " << sm[1] <<
std::endl;
text = sm.suffix();

}
}

This will produce output:

best with sub−expression = be
worst with sub−expression = wor

sm[0] represents the text matched by the full regular expression.
Note: This example does not work in g++-4.8; versions > 5.0 do.

Philip Blakely (LSC) Advanced C++ 89 / 217



Templating conditions

Outline

11 Compile-time checks

12 Lambdas and functors

13 Shared pointers

14 Regular expressions

15 Templating conditions

Philip Blakely (LSC) Advanced C++ 90 / 217



Templating conditions

Type traits

When using templated functions, we sometimes want different
functionality based on what form a type takes.

Simple example:

template<typename T>
void print(const T& s){
if(std::is arithmetic<T>::value){
std::cout << "Number: " << s << std::endl;

}
else if(std::is pointer<T>::value){
std::cout << "Pointer " << std::hex << s << std::endl;

}
}

These are known as type traits and there is a long list of possible
traits which allow inspection of a type.

They may be useful in conjunction with static assert.

See Examples/type traits.C

Philip Blakely (LSC) Advanced C++ 91 / 217



Templating conditions

Type traits

is void<X>

is integral<X>

is floating point<X>

is array<X>

is fundamental<X>

is scalar<X> (not class or function)

is member pointer<X>

is const<X>

is abstract<X> Does X have a pure virtual function?

is default constructible<X> Can X be constructed with no
parameters?

Many others are available...

Philip Blakely (LSC) Advanced C++ 92 / 217



Templating conditions

enable if

Sometimes we want certain templated functions only to be
compiled if certain conditions hold.
The construct:

std::enable if<bool cond, typename T = void>

has a member called type (of type T) iff cond is true

This is usually used in a SFINAE context (see later lecture) to
provide different versions of a function depending on the type
being passed.
Consider a templated Vector<T> which should work with the
following:
Vector<double> a(9.6);
Vector<int> b(10);
Vector<int> c(a);

The second line should initialize all elements of b to be 10.
The third line should copy values from a into c (Note that one
contains double and the other int).
Philip Blakely (LSC) Advanced C++ 93 / 217



Templating conditions

enable if ctd

We end up with two templated functions in Vector.
See Examples/enable if.C

template<typename S>
Vector(const S& s,

typename std::enable if<std::is arithmetic<S>::value,
int>::type = 0){

for(unsigned int i=0 ; i < 10 ; i++){
m data[i] = s;

}
}
template<typename S>
Vector(const S& s,

typename std::enable if<!std::is arithmetic<S>::value,
int>::type = 0){

for(unsigned int i=0 ; i < 10 ; i++){
m data[i] = s[i];

}
}

Philip Blakely (LSC) Advanced C++ 94 / 217



Templating conditions

enable if ctd

If S is an arithmetic type, then enable if<...>::type is an
integer parameter, with default value 0.

If S is not an arithmetic type, then enable if<...>::type is not
a type, and the function is ill-defined.

However, SFINAE means that this templated function does not
raise an error but the compiler merely discards it from the set of
available functions that it considers.

The opposite logic works for a Vector<int> for the second
function.

Thus, the first function is called if an arithmetic type is passed,
and the second is called if a non-arithmetic type is used.

Philip Blakely (LSC) Advanced C++ 95 / 217


