
Part VIII

C++17 specific

Philip Blakely (LSC) Advanced C++ 134 / 217

Expansion of constexpr

Outline

21 Expansion of constexpr

22 Miscellaneous

23 Template parameter deduction

Philip Blakely (LSC) Advanced C++ 135 / 217

Expansion of constexpr

if constexpr

From C++17, you can now have if statements that are evaluated
at compile-time, and avoid instantiation of branches other than
the one that succeeds.

For example, part of the Variadic Templates example now reads:

template<int N>
auto get()const{
if constexpr(N > 0){
return Tuple<OtherParams...>::template get<N−1>();

}
else{
return param;

}
}

where omitting constexpr would result in get<-1> being
instantiated, giving an error.

Philip Blakely (LSC) Advanced C++ 136 / 217

Expansion of constexpr

if constexpr

Overall, this avoids the need for std::enable if and a separate
specialization of get<0>().

The else does not need a constexpr; it binds to the preceding if.

Also, note the use of auto, which avoids the complex EltType

construct.

The return-type deduction ignores the non-followed if constexpr

branch if N==0 and takes its type from param.

See constexpr if.C for full code.

Philip Blakely (LSC) Advanced C++ 137 / 217

Expansion of constexpr

Const-evaluation for non-type template args

Previously, non-type, non-integer template parameters had to be
explicitly given:

double ODESolver::Euler(double x, double dt){
return dt;

}

template<double (∗f)(double, double)>
double mySolver(double x, double T){

for(int i=0 ; i < 100 ; i++){
x += T/100 ∗ f(x, T/100);

}
return x;

}

double y = mySolver<ODESolvers::Euler>(x, T);

Philip Blakely (LSC) Advanced C++ 138 / 217

Expansion of constexpr

Const-evaluation for non-type template args

However, since we can imagine constexpr functions that return a
function pointer, consider:

constexpr auto pickSolver(ODE solver){
if(solver == Euler){
return &ODESolvers::Euler;

}
else if(solver == RK2){
return &ODESolvers::RK2;

}
}

In C++17: mySolver<pickSolver(Euler)>(0, 10) is now valid.

This a fairly contrived example, but more complex ways of picking
a function pointer could be imagined, or indeed constexpr

resulting in either pointers or references.

See Examples/template arg.C for full code.

Philip Blakely (LSC) Advanced C++ 139 / 217

Expansion of constexpr

constexpr lambda functions

In C++17 lambda functions can be implicitly cast to constexpr
function pointers.

template<typename T>
constexpr int smallest(bool (∗lessThan)(int, int),

std::initializer list<int> a) {
int s = ∗a.begin();
for(int i : a) {
if(lessThan(i, s)) {

s = i;
}

}
return s;

}
auto mod10 = [](int a, int b){return (a % 10) < (b % 10);};
static assert(smallest(mod10, {19, 9, 22, 31}) == 31);

We use a lambda-comparison function that compares the units
digits of two elements of a list. This can be evaluated at
compile-time.
See Examples/constexpr lambda.C for full code.
Philip Blakely (LSC) Advanced C++ 140 / 217

Expansion of constexpr

constexpr limits

For anyone concerned (or disturbingly excited) that constexpr
allows a lot of calculation to be done at compile-time, there are
limits.

The C++17 standard recommends allowing up to 512 recursive
constexpr invocations and 1, 048, 576 full-expressions in a
constexpr evaluation.

For gcc and clang the former can be changed by
-fconstexpr-depth.

The latter appears not to be modifiable in gcc, but can be in
clang by -fconstexpr-steps.

gcc also has -fconstexpr-loop-limit=262144 by default.

Philip Blakely (LSC) Advanced C++ 141 / 217

Miscellaneous

Outline

21 Expansion of constexpr

22 Miscellaneous

23 Template parameter deduction

Philip Blakely (LSC) Advanced C++ 142 / 217

Miscellaneous

Auto deduction from braced list

I think the behaviour of:

auto x{func()};
auto x2 = {func()};

should change at C++17, but it doesn’t seem to.

Also, I think:

auto x1{1, 2};

should have been permitted before C++17, but neither gcc nor
clang++ do so.

Maybe C++17 just explicitly bans something that compilers
banned anyway?

See http://open-std.org/JTC1/SC22/WG21/docs/papers/2013/

n3681.html for background.

See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2014/n3922.html for solution.

Philip Blakely (LSC) Advanced C++ 143 / 217

http://open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3681.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3681.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3922.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3922.html

Miscellaneous

typename in template template parameter

Prior to C++14, template template parameters did not allow the
use of typename.

I tried the example at: http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2014/n4051.html but cannot get a failure to
compile with earlier standard.

Philip Blakely (LSC) Advanced C++ 144 / 217

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4051.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4051.html

Miscellaneous

Nested namespaces

Namespace definitions can now be nested with a more succinct
syntax:

namespace boost{
namespace tuples {
...

}
}

can now be replaced by

namespace boost::tuples{
...

}

This is probably of most interest to library authors.

Philip Blakely (LSC) Advanced C++ 145 / 217

Miscellaneous

Guaranteed copy elision

As noted in “Return Value Optimization”, compilers are allowed
to make optimizations by ignoring an unnecessary copy/move.

However, in C++14 an object without copy or move constructors
could not undergo this optimization, even though the constructor
was not necessary.

In C++17 this restriction is removed, by reworking the definitions
of what is being transferred, so that a copy/move would not be
required anyway.

Philip Blakely (LSC) Advanced C++ 146 / 217

Miscellaneous

Guaranteed copy elision ctd

struct NonMoveable
{
NonMoveable(int){}
NonMoveable(NonMoveable&) = delete;
NonMoveable(NonMoveable&&) = delete;
std::array<int, 1024> arr;

};
NonMoveable make(){
return NonMoveable(42);

}

This is not allowed in C++14 but is allowed in C++17, even though
there is no copy/move constructor.

See Examples/copy elision.C

See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2015/p0135r0.html

Philip Blakely (LSC) Advanced C++ 147 / 217

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0135r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0135r0.html

Template parameter deduction

Outline

21 Expansion of constexpr

22 Miscellaneous

23 Template parameter deduction

Philip Blakely (LSC) Advanced C++ 148 / 217

Template parameter deduction

Automatic template deduction

In C++17 you can omit some template parameters when
constructing objects:

std::pair a(1.0, 2); // OK
std::vector b{1, 4, 7, 0}; // OK
std::vector c{1, 4.2, 7, 0}; // Not OK.

The compiler deduces the element types double and int for the
pair, int for the first vector, and fails to find a consistent type
for the last case.

This results from a change in the standard (rather than header
files).

The standard specifies that the compiler attempt to find a suitable
constructor based on the explicit argument types passed in.

Philip Blakely (LSC) Advanced C++ 149 / 217

Template parameter deduction

User-defined template deduction guides

The above does not work for:

int d[5] = {1,2,3,4,5};
std::vector d2(d, d+5);

because the compiler cannot deduce the vector template
parameter from the iterator/pointer arguments.

Here we have to use user-defined deduction guides.

At a scope outside the vector class you can define:

template<typename Iter,
typename ValType = typename iterator traits<Iter>::value type>
vector(Iter, Iter) −> vector<ValType>;

(slightly simplified from actual STL definition)

The compiler now adds this to the set of constructors it attempts
to match. It can easily deduce the type of Iter, from which it
finds the default parameter ValType, which then forwards to the
constructor for vector<ValType> that takes two iterators.

Philip Blakely (LSC) Advanced C++ 150 / 217

Template parameter deduction

User-defined template deduction guides

Full code is available at Examples/template deduction.C.

See https://en.cppreference.com/w/cpp/language/class_

template_argument_deduction for more details

and for the standards paper describing the issue:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2016/p0091r3.html

Philip Blakely (LSC) Advanced C++ 151 / 217

https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html

Template parameter deduction

Structured bindings

If a function returns a std::tuple then since C++14 we have been
able to do:

std::tuple<int, double, std::string> func()
{
return std::tuple(42, 3.14159, "Ford");

}
int x; double y; std::string z;
std::tie(x, y, z) = func();

However, from C++17 we can now also do any of:

auto [x, y, z] = func();
const auto [x, y, z] = func();
const auto& [x, y, z] = func();
auto& [x, y, z] = func();

See Examples/structured bindings.C where we demonstrate
that the last example fails if a non-lvalue is returned from func.

Philip Blakely (LSC) Advanced C++ 152 / 217

Template parameter deduction

Range-based for loop

From C++17 it is not necessary for the begin and end of a for-loop
range to be of the same type.

Previously, the begin and end were iterators and had to be of the
same type.

See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2016/p0184r0.html

It is unclear whether this is of much use within C++17? Seems to
be useful for new Ranges TS library.

Philip Blakely (LSC) Advanced C++ 153 / 217

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0184r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0184r0.html

Template parameter deduction

Omitted

I have worked from gcc’s list of C++ features. From these, I have
omitted the following:

Pack expansions in using-declarations: http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2016/p0195r2.html

Inheriting constructors: http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2015/p0136r1.html

Philip Blakely (LSC) Advanced C++ 154 / 217

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0195r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0195r2.html

Part IX

C++20 specific

Philip Blakely (LSC) Advanced C++ 155 / 217

C++20 upcoming

Although C++20 is still (maybe nearly) 2 years away, we have
some indication of which major features will be in the standard.

Some compilers have begun to implement these.

gcc has the -std=c++2a option, but support is “highly
experimental” as of February 2019.

Interesting prospects include:

Contracts - more complex and feature-rich form of assert and
static assert - see http://www.open-std.org/jtc1/sc22/

wg21/docs/papers/2018/p0542r5.html

Operator <=> - see http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2017/p0515r3.pdf

Philip Blakely (LSC) Advanced C++ 156 / 217

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0515r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0515r3.pdf

C++20 major features

Feature-set agreed in February 2019:
https://herbsutter.com/2019/02/23/

trip-report-winter-iso-c-standards-meeting-kona/

Modules: Ability to encapsulate program components without
polluting main scope (with macros, for example). May be familiar
from Python and Fortran. Can deliver a set of variables, functions,
and classes.

Coroutines: Allows ability to suspend functions, pass control to
another one, and return to the original function later.

Concepts: Support for explicit Requires, Constraints, Expects, and
Mandates specifications for functions. These are various conditions
that the function needs in order to function correctly. Intended to
encapsulate enable if and similar constructs in a more readable
way.

Philip Blakely (LSC) Advanced C++ 157 / 217

https://herbsutter.com/2019/02/23/trip-report-winter-iso-c-standards-meeting-kona/
https://herbsutter.com/2019/02/23/trip-report-winter-iso-c-standards-meeting-kona/

