
Part X

Advanced C++ topics

Philip Blakely (LSC) Advanced C++ 158 / 217



References

The following are highly regarded books. They are fairly in-depth,
and I haven’t read them in their entirity.

However, if you want to write robust code that will not surprise
you or others using your code, and which can be extended in the
future, you should at least have a look at them.

Effective C++, Scott Meyers

Exceptional C++, Herb Sutter

Modern C++ Design, Andrei Alexandrescu

Philip Blakely (LSC) Advanced C++ 159 / 217



Base class construction

Suppose you have a base-class containing some data, with a
relatively complex initialization.

Any derived class should not copy-paste the base’s constructor.

When constructing any object, the base-object is always
constructed first, and this can be called from the derived class:

class SpecialVector : Vector{
SpecialVector(int SIZE, int d) : Vector(SIZE), m data(d){}
int m data;

};

Note that the Vector initializer comes first. You could put it later,
but it will always be initialized first.

gcc warns (with -Wall) if the constructor order is different from
what will actually happen.

See Examples/baseclass.C

Philip Blakely (LSC) Advanced C++ 160 / 217



Resource Acquisition Is Initialization

A good programming practice to abide by is RAII.

The idea is that all finite resources such as allocated memory, file
handles, etc. are handled through object instances.

Any class that handles any resource must ensure that once the
object ceases to exist, the resource it handles is freed (or is passed
onto another object)

For example, a Vector object which allocates memory should have:

Vector::Vector(size t s){
m data = new double[s];

}
Vector::˜Vector(){

delete[] m data;
}

... as well as similar functionality from other constructors.

Philip Blakely (LSC) Advanced C++ 161 / 217



RAII ctd

However, for more complex objects, more care must be taken:
DoubleVector::DoubleVector(size t s){

m data = new double[s];
m data2 = new double[s ∗ 10];

}
DoubleVector::˜DoubleVector(){
delete[] m data;
delete[] m data2;

}

What happens if the first allocation succeeds and the second fails?

If you do not catch exceptions, then the std::bad alloc will
propagate all the way up the call-stack and cause the program to
terminate.

If you do handle exceptions, then the object will potentially be left
in an uninitialized state, and the first block of data will be leaked.

You should put a try / catch block around the second new

statement, and delete m data[] before re-throwing the exception.

Philip Blakely (LSC) Advanced C++ 162 / 217



Base class destruction

We saw previously that the base class is constructed before the
derived class.

Conversely, on destruction, the derived class is destroyed first,
before the base class.

If the derived class constructor throws an exception, then any base
classes already constructed are destroyed (in order).

See Examples/raii.C for an example.

Philip Blakely (LSC) Advanced C++ 163 / 217



Polymorphism and RAII

Suppose you have a simple polymorphic class with dynamically
allocated data:

class Base{
public:
Base(){

m data = new int[10];
}

˜Base(){
delete[] m data;

}
private:
int∗ m data;

};

class Derived : public Base{
public:
Derived(){

m myData = new int[10];
}

˜Derived(){
delete[] m myData;

}
private:
int∗ m myData;

};

Philip Blakely (LSC) Advanced C++ 164 / 217



Polymorphism and RAII

You would naturally use:

Base∗ b = new Derived;
delete b;

However, this leaks the memory allocated by the Derived object;
its destructor is never called.

Only the Base destructor is called.

The solution is to make the Base destructor virtual:

virtual ˜Base(){
delete[] m data;

}

Now delete b causes first the Derived destructor then the Base

destructor to be called.

See Examples/destructors.C for the full example.

Philip Blakely (LSC) Advanced C++ 165 / 217



Polymorphism and RAII

Note that any memory allocated by member data of the Derived

object is also leaked.

For example, even if Derived only contains a std::vector<int>,
and Base contains no internal data, the Base class must still have
a virtual (and empty) destructor.

Destructors of member data are only called when the class’s
destructor (auto-generated or explicitly written) is called.

Destructors are not virtual by default because making them so
results in extra code. The principle is “don’t pay for what you
don’t need”. However, a non-virtual destructor on a polymorphic
base-class is almost always wrong.

Philip Blakely (LSC) Advanced C++ 166 / 217



SFINAE

You may see references to “Substitution Failure Is Not An Error”

This refers to a C++ feature that allows us to selectively allow
compilation of templated functions.

It prevents instantiation of templated functions that result in
ill-defined types.

An example is the use of std::enable if<bool b, typename T>

If the parameter b is true, then: std::enable if<true,

T>::type is the same as T.

If b is false, then std::enable if<false, T>::type does not
exist.

Philip Blakely (LSC) Advanced C++ 167 / 217



SFINAE example

From Examples/sfinae.C:

template<typename T>
void print(T t, typename

std::enable if<std::is pointer<T>::value, char>::type = 0){
std::cout << "Pointer to " << ∗t << std::endl;

}

template<typename T>
void print(T t, typename

std::enable if<!std::is pointer<T>::value, char>::type = 0){
std::cout << "Value = " << t << std::endl;

}

int a = 9;
print(a);
print(&a);

Philip Blakely (LSC) Advanced C++ 168 / 217



SFINAE example

The first parameter is each print is the plain T so that the
compiler can deduce the type.

The second parameter is either non-existent or an char, whose
value defaults to zero.

This looks like partial-template specialization, but isn’t.

What it really is are two overloaded functions called print, only
one of which will ever be considered for any particular type T.
because the second parameter does not give a valid type in one
case.

The non-working version does not give an error because
Substitution Failure Is Not An Error.

Philip Blakely (LSC) Advanced C++ 169 / 217



SFINAE example

Similarly, you can make the functions differ only on their return type:

template<typename T>
typename std::enable if<std::is pointer<T>::value>::type

print2(T t){
std::cout << "Pointer to " << ∗t << std::endl;

}

template<typename T>
typename std::enable if<!std::is pointer<T>::value>::type

print2(T t){
std::cout << "Value = " << t << std::endl;

}

Specifying no type for enable if defaults to void.
The use of enable if often requires the use of a dummy function
parameter or template parameter.

Philip Blakely (LSC) Advanced C++ 170 / 217



Curriously Recurring Template Pattern

You may sometimes need to implement a base class as an interface
for a templated class, but whose functionality depends on the
templated class.

A classic example is cloning. You want the functionality:

Vehicle∗ myCar = new Car;
Vehicle∗ anotherCar = myCar−>clone();

This cannot be implemented in Vehicle normally as Vehicle does
not have access to all elements of Car, and so would slice off any
data not contained in Vehicle.

We could implement a clone function for every new type derived
from Vehicle.

That seems error-prone and wasteful.

Philip Blakely (LSC) Advanced C++ 171 / 217



Curiously Recurring Template Pattern

Instead, insert a templated class (see Examples/crtp.C):

class Vehicle{
public:
virtual Vehicle∗ clone()const = 0;

};
template<typename Derived>
class VehicleInterface : public Vehicle{

virtual Vehicle∗ clone()const{
return new Derived(∗static cast<const Derived∗>(this));

}
};
class Car : public VehicleInterface<Car>{};

Now, the clone() function works because the fully-derived type is
known and used at instantiation.

This is “Curiously Recurring” because it seems to occur a lot, not
because it is recursive.

This approach can be used to reduce copy-pasting for other class
member functions as well.
Philip Blakely (LSC) Advanced C++ 172 / 217



Has-a or is-a?

In the first lecture series, you implemented a class hierarchy
structure.

One important approach to designing a class structure is to
consider whether a kind of object is a particular kind of more
general object, or whether the more general object should contain
this new object type.

This is abbreviated to a is-a or has-a relationship.

For example, a Car is a kind of Vehicle:

struct Car : public Vehicle{ };

but it contains an Engine (has-a) and other components:

struct Car : public Vehicle{
Engine m engine;

};

Philip Blakely (LSC) Advanced C++ 173 / 217



Other considerations

Another relationship between classes is the
implemented-in-terms-of approach.

For example, a (horribly inefficient) Vector class could be
implemented in terms of a List class.

The Vector should not be convertible to a List, and it will
probably not use any of the internal implementation details of
List.

Thus we should have:

class Vector{
public:
Vector(size t s);
double operator[](size t i)const;

private:
List m list;

};

Philip Blakely (LSC) Advanced C++ 174 / 217



More object-orientation

If you implement a polymorphic set of classes, ensure that
whatever constraints the generic interface (base-class) suggests or
enforces are also enforced by all derived classes.

Recall the example from the exercises in the first C++ course: a
Circle is not a kind-of Ellipse.

More details of object orientation can be found in Sutter’s
Exceptional C++: Item 24.

Philip Blakely (LSC) Advanced C++ 175 / 217



Factory construct - why

In modular programs, or at least ones where multiple options are
open to the user, you often need a function like:

const Shape∗ getShape(const std::string& name){
if(name == "Sphere") return new Sphere;
if(name == "Triangle") return new Triangle;
return nullptr;

}

Maintaining this kind of function is error-prone, and needs
updating every time you add a new object.

A better (more complicated to set up, but easier to maintain)
approach is the Factory construct.

Philip Blakely (LSC) Advanced C++ 176 / 217



Factory construct

Consider a mapping:

std::map<std::string, const Shape∗ (∗)()> factory;

We can now use:

const Shape∗ getShape(const std::string& name){
if(factory.find(name) != factory.end()){
return factory[name]();

}
return nullptr;

}

Note that the stored object is a pointer to function that, when
passed no parameters, returns a pointer to a constant Shape.

Philip Blakely (LSC) Advanced C++ 177 / 217



Factory construct - initialize

Now, each Shape-derived type needs to take the form:

class Sphere : public Shape{
public:
static const Shape∗ create();

private:
static const bool isInFactory;

};

const Shape∗ Sphere::create(){
return new Sphere;

}

const bool Sphere::isInFactory =
factory.insert(
std::make pair("Sphere", Sphere::create)

).second;

Sphere dummy sphere;

... recalling that the insert function returns an iterator and a
boolean indicating whether insertion succeeded.

Philip Blakely (LSC) Advanced C++ 178 / 217



Factory construct - how?

The reason that this approach works is that the static const

bool members of the Sphere and Triangle have to be initialized
before your code starts.

They are therefore initialized, before main is called, using the
insert function call.

There is no guarantee about the order in which the various
function calls occur.

If the dummy sphere variable were not specified, the compiler
would not necessarily generate code to initialize the member data
of an unused class.

See Examples/factory.C for the full code.

Philip Blakely (LSC) Advanced C++ 179 / 217



Templated function calling

Outline

24 Templated function calling

Philip Blakely (LSC) Advanced C++ 180 / 217



Templated function calling

Templated functions

Functions can be templated:

template<typename T>
T sum(const std::vector<T>& v);

They cannot be partially specialized:

template<typename T, typename S>
std::vector<T> product(const std::vector<T>&, const
std::vector<S>&){...}

template<typename T>
std::vector<T> product(const std::vector<T>&, const
std::vector<T>&){...} // Invalid

This is because otherwise it becomes difficult to separate
overloaded function calls from partial template specialisations.

See http://ww.gotw.ca/publications/mill17.htm for a
discussion of the problems.

Philip Blakely (LSC) Advanced C++ 181 / 217

http://ww.gotw.ca/publications/mill17.htm


Templated function calling

Ambiguous templated functions

You may have tried to compile:

double dT = calcTimeStep();
double dTActual = std::min(dT, 1);

and been surprised when it failed.

Even though ’1’ is an integer, surely the compiler can figure out
that you want std::min<double>?

No (not without a lot of type traits to indicate which types can be
promoted).

There are two solutions to the above:

double dTActual = std::min(dT, 1.0);
double dTActual = std::min<double>(dT, 1);

The first is probably nicer.

Philip Blakely (LSC) Advanced C++ 182 / 217



Templated function calling

Ambiguous templated functions

The reason this fails is that std::min<T>(const T&, const T&)

only has one template parameter, and a consistent T cannot be
deduced.

The C++ standard specifies this form, rather than a more general
one.

Philip Blakely (LSC) Advanced C++ 183 / 217



Templated function calling

Scope of templated classes
If you have a templated class with a templated base, you may
encounter confusion:

template<typename T>
struct A{
int mySize(){
return sizeof(T);

}
};

template<typename T>
struct B : A<T>{

void print(){
std::cout << mySize() << std::endl;

}
};

will fail to compile:
error: there are no arguments to ’mySize’ that depend on a

template parameter, so a declaration of ’mySize’ must be
available

... which is not very revealing.
Philip Blakely (LSC) Advanced C++ 184 / 217



Templated function calling

Scope of templated classes

The reason is that C++ has a two-phase name look-up.

The first time that the compiler parses a class or function it must
be able to work out what the types of any
non-template-parameter-dependent functions or types are.

In the previous slide, mySize() when called does not depend on a
template parameter, and therefore the compiler looks through the
set of functions, variables, and types that are available, without
knowing T.

Since mySize() will actually be found in the base-class only when
T is known, this phase fails.

The solution is to make the call clearly depend on T:

std::cout << this−>mySize() << std::endl;
std::cout << A<T>::mySize() << std::endl;

Either of these causes name-look-up for mySize() to be delayed
until the second phase, when T is known.

Philip Blakely (LSC) Advanced C++ 185 / 217



Templated function calling

Scope of templated classes

Further problems arise if you want to call a templated member
function of a templated base.

If the template parameter can be deduced, then it’s simple:

template<typename T>
template<typename S>
int A::itsSize(S a){
return sizeof(S);

}

template<typename T>
void B<T>::print(){

std::cout << this−>itsSize(2) << std::endl;
}

(See Examples/templatedBase.C)

Philip Blakely (LSC) Advanced C++ 186 / 217



Templated function calling

Calling a templated member

If you want a different (or non-deducible) template parameter, you
must use:

std::cout << this−>template itsSize<double>(2) << std::endl;

Otherwise, this->itsSize<double> is interpreted as an
unresolved overloaded function, followed by a less-than sign,
followed by double

This will not succeed (possibly unless you’ve overloaded a very
weird operator<, and even then I think it might be impossible).

Philip Blakely (LSC) Advanced C++ 187 / 217



Templated function calling

typename
Due to the two-phase look-up, the compiler sometimes needs to be
told in advance whether a typename or something else will result.

template<typename X>
struct Y : X{

using typename X::F;
void f(){
int x = F();

}
};

The F() construct on its own could either be a function call, or a
construction of an object of type F using no parameters.
Further, F is only brought into scope by the using directive.
The typename tells the compiler to expect F to be a type.
If typename was absent then X::F would be assumed to be a
function.
Whichever is required will be checked against the first phase’s
deductions when X is known, on the second phase.
See Examples/typename.C for a complete demonstration.
Philip Blakely (LSC) Advanced C++ 188 / 217


