
Part XI

Advanced Templating

Philip Blakely (LSC) Advanced C++ 189 / 217



Template instantiation

Outline

25 Template instantiation

26 Expression Templates

Philip Blakely (LSC) Advanced C++ 190 / 217



Template instantiation

Instantiation models

See https://gcc.gnu.org/onlinedocs/gcc/

Template-Instantiation.html for full technical details.

If you are using gcc or similar compilers icpc, clang++ then the
following should hold:

Template code is instantiated when the compiler encounters a use
of a templated entity with particular template parameters (either
explicit or deduced).

The compiler will only instantiate code which is accessible to it at
that point.

Thus, you typically need to declare all templated code in a header
file.

When your templated class or function is used within a .C file, the
compiler will be able to instantiate all the code visible to it
(i.e. further up the pre-processed source-file)

Philip Blakely (LSC) Advanced C++ 191 / 217

https://gcc.gnu.org/onlinedocs/gcc/Template-Instantiation.html
https://gcc.gnu.org/onlinedocs/gcc/Template-Instantiation.html


Template instantiation

Instantiation models - example

sum.hpp:

template<typename T>
T sum(const std::vector<T>& v);
#include "sumTemplates.hpp"

sumTemplates.hpp:

template<typename T>
T sum(const std::vector<T>& v){

T total = (T)0;
for(const T& i : v){
total += i;

}
}

sum.cpp:

#include "sum.hpp"
int main(void){
std::vector<int> values;
int f = sum(values);

}

Philip Blakely (LSC) Advanced C++ 192 / 217



Template instantiation

Instantiation models - example

When it encounters sum(values) the compiler instantiates and
compiles the templated function sum.

The compiled code is placed into the object file sum.o.

This is done for each .cpp file that refers to sum(const

std::vector<int>&)

Of course, std::vector is itself a template, so the compiler
generates code for std::vector<int>::operator[] etc. for each
object file as well.

With only the declaration of sum() from sum.hpp, but not its
definition from sumTemplates.hpp, the code will compile, but not
link.

Philip Blakely (LSC) Advanced C++ 193 / 217



Template instantiation

Instantiation models - problems

There are some drawbacks to the above approach:

A templated function/class may be compiled multiple times (once
for each object file it is contained in), resulting in larger object files,
and longer compile times than necessary. However, multiple
definitions are discarded by the linker.
If you change a templated function/class, then every .C file it is
included in must be recompiled. (If not, then multiple,
non-matching definitions of functions/classes could be found by the
linker. Murphy’s law says that the wrong ones will be discarded,
resulting in hours of confusion.)

These drawbacks are not a problem in practice; disk-space and
compile-time are sufficiently cheap not to matter too much.

Philip Blakely (LSC) Advanced C++ 194 / 217



Template instantiation

Instantiation models - explicit instantiation

You might wonder whether we can avoid the implicit instantiation
above.

We can to some extent; if we have sum.hpp, but not
sumTemplates.hpp in the above, then the compiler can compile
sum.cpp as it knows the function signature of sum.

However, we must then ensure that a version of sum<int> is
compiled somewhere.

We could have: sumInstantiate.cpp:

#include "sumTemplates.hpp"
template int sum(const std::vector<int>&);

In general, this reduces compile time and space for object files.

However, it also means that we have to add an extra line to
sumInstantiate.cpp for every type for which we need to
instantiate sum().

Philip Blakely (LSC) Advanced C++ 195 / 217



Template instantiation

Instantiation models

Explicit instantiation requires maintenance overhead in simple
cases. In complex cases it becomes infeasible.

Further, explicit instantiation usually means that small templated
functions cannot be inlined at the point of calling. This may make
a substantial difference to how well the code can be optimized.

You are strongly encouraged to use the implicit instantiation
approach unless you know what you are doing.

Philip Blakely (LSC) Advanced C++ 196 / 217



Expression Templates

Outline

25 Template instantiation

26 Expression Templates

Philip Blakely (LSC) Advanced C++ 197 / 217



Expression Templates

Expression Templates in detail

In the original C++ lectures I explained some of the structure of
expression templates.

For masochists, here are the full details of what goes on.

Full details can be found in Vandevoorde and Josuttis.

Philip Blakely (LSC) Advanced C++ 198 / 217



Expression Templates

A reminder

We want the following:

Vector a(10), b(10), c(10);
c = 2.3∗a + 4.5∗b + a∗b; // Assume elt−wise multiplication

to be evaluated without creating intermediate temporary variables for
the subexpressions:

Vector tmp1(10) = 2.3∗a;
Vector tmp2(10) = 4.5∗b;
Vector tmp3(10) = tmp1 + tmp2;
Vector tmp4(10) = a∗b;
Vector tmp5(10) = tmp3 + tmp4;
c = tmp5;

Philip Blakely (LSC) Advanced C++ 199 / 217



Expression Templates

Basic vector

Suppose we have a simple Vector class, with fixed size known at
compile time.

template<int SIZE>
class Vector{
public:
Vector(){}
Vector(const Vector& a){
for(std::size t i=0 ; i < SIZE ; i++){

m data[i] = a[i];
}

}
Vector& operator=(const Vector& a){

for(std::size t i=0 ; i < SIZE ; i++){
m data[i] = a[i];

}
return ∗this;

}
double operator[](std::size t i)const{
return m data[i];

}
double& operator[](std::size t i){
return m data[i];

}
private:

double m data[SIZE];
};

Philip Blakely (LSC) Advanced C++ 200 / 217



Expression Templates

Vector expression

We want to create a copy-constructor from a Vector expression:

template<int SIZE>
template<typename VectorExpression>
Vector<SIZE>& Vector<SIZE>::operator=(const VectorExpression& v){

for(size t i=0 ; i < SIZE ; i++){
m data[i] = v[i];

}
}

This has two drawbacks:
1 We have no guarantee that the VectorExpression type has the

correct SIZE.
2 This could apply to any type, including a std::vector, a

std::valarray, etc. (this could be an advantage).

We create a general VectorExpr type instead.

Philip Blakely (LSC) Advanced C++ 201 / 217



Expression Templates

Vector expression type

From the previous copy-constructor, a VectorExpr just needs to
have an operator[] function.

A VectorExpr may not hold any data as such; the idea is that we
do not create extra storage for the intermediate sub-expressions.

So, its data storage is a generic type that only has to implement a
operator[].

(This feels as though we have the same problem as with the
copy-constructor before, but not quite; VectorExpr is under our
control, and we only allow VectorExpr objects to be created by
our functions.

So, we have:

template<int SIZE, typename InternalData> class VectorExpr;

Philip Blakely (LSC) Advanced C++ 202 / 217



Expression Templates

Vector expression type

template<int SIZE, typename InternalData>
class VectorExpr{
public:
VectorExpr(const InternalData& d) : m data(d) { }

double operator[](size t i){
return m data[i];

}
private:
InternalData m data;

};

So, what is InternalData, and how do we construct a
VectorExpr?

We now look at the problem from the other end...

Philip Blakely (LSC) Advanced C++ 203 / 217



Expression Templates

Vector expression construction

What is the result of a + b or Vector<SIZE> + Vector<SIZE> ?

We do not want to evaluate the result until the copy-constructor
for a Vector is called.

The copy-constructor calls the operator[], so we create an object
that stores the operand Vectors internally, and only evaluates the
sum of them in operator[]

For generality, we want to be able to sum multi-term expressions,
so the operands may themselves be vector-expressions, not just
Vectors.

Philip Blakely (LSC) Advanced C++ 204 / 217



Expression Templates

Vector expression construction

template<int SIZE, typename Op1, typename Op2>
class VectorAdd{
public:
VectorAdd(const Op1& a, const Op2& b) : op1(a), op2(b) { }

double operator[](size t i)const{
return op1[i] + op2[i];

}
private:
Op1 op1;
Op2 op2;

};

Again, the operand types only need to have an operator[]

implemented.

Philip Blakely (LSC) Advanced C++ 205 / 217



Expression Templates

Vector expression construction

So, how do we construct a VectorAdd object? It needs to be the
result of an operator+:

The operator+ needs to take two general operands:
VectorExpr<SIZE, InternalData1> and VectorExpr<SIZE,

InternalData2>

It then constructs a VectorAdd object with these as the contained
data.

Sketchily:

operator+(const Op1& op1, const Op2& op2){
return VectorAdd<SIZE, Op1, Op2>(op1, op2);
}

However, this will overload + for any two possible operands, of any
type...

Philip Blakely (LSC) Advanced C++ 206 / 217



Expression Templates

Vector expression construction

We want to restrict the operator+ to vector expressions we
control, i.e. not a + std::vector<int>(10).
This is why we created VectorExpr.
So, the operator+ acts on two VectorExpr objects, which might
have any internal storage.
In order to be part of large expressions, it must also return a
VectorExpr:

template<int SIZE, typename IData1, typename IData2>

VectorExpr<SIZE,VectorAdd<SIZE, IData1,IData2>>

operator+(const VectorExpr<SIZE, IData1>& op1,
const VectorExpr<SIZE, IData2>& op2){

return VectorExpr<SIZE,
VectorAdd<SIZE, IData1,IData2>>

(VectorAdd<SIZE, IData1, IData2>(op1, op2));

}
Philip Blakely (LSC) Advanced C++ 207 / 217



Expression Templates

Vector expression construction

Finally, we need to ensure that a basic Vector can be seen as a
VectorExpr.

Otherwise, the operator+ will not apply to it correctly.

This is actually slightly more complex than it first appears; even if
we implement a conversion from a Vector to a VectorExpr, the
compiler does not perform the conversion we might expect.

We have to change our classes as follows:
Vector<SIZE> 7→ SimpleVector<SIZE>

VectorExpr<SIZE, InternalData> 7→
Vector<SIZE, InternalData = SimpleVector<SIZE>>

So, we usually use a Vector type in our code, which by default has
a SimpleVector as its storage.

This makes the operator+ a little more complicated, because we
now have to wrap the internal data-types in a Vector.

Philip Blakely (LSC) Advanced C++ 208 / 217



Expression Templates

Vector assignment

We now only need to create the assignment from a
vector-expression to a vector:

template<int SIZE, typename IData>
template<typename IData2>
const Vector<SIZE, IData>&
Vector<SIZE, IData>::operator=
(const Vector<SIZE, IData2>& v)const{

for(size t i=0 ; i < SIZE ; i++){
m data[i] = v[i];

}
return ∗this;

}

This ensures that a Vector can only be constructed from an
Vector-expression of the same size.

See Examples/expressionTemplates.C for the full code.

Philip Blakely (LSC) Advanced C++ 209 / 217



Expression Templates

More operations

We also want to have more functionality for our expressions.

Implementing VectorMultiply, VectorSubtract, VectorDivide
is easy:

#define VectorBinaryOp(Name, Op) \
class Vector##Name{ \

double operator[](size t i)const{ \
return Op1[i] Op Op2[i]; \

} \
};

VectorBinaryOp(Add, +)
VectorBinaryOp(Multiply, ∗)

Much code omitted above: constructor, member data, etc.

Philip Blakely (LSC) Advanced C++ 210 / 217



Expression Templates

Scalars

Applying scalars to this is a little more complicated.

We want to overload operator+(Vector<...> a, double b).

This needs to return Vector<VectorAdd<A, B>>. What is B?

We can create a simple class Scalar that behaves like a Vector:

class Scalar{
public:
Scalar(double v) : m value(v){}
double operator[](size t)const{return m value;}

private:
double m value;

}

It’s like a Vector that has all its elements equal to m value.

This means that we can construct a VectorAdd that has a Scalar

as an internal data-type.

Otherwise we would have to create a separate VectorAdd class for
each of 2.0 + v and v + 2.0.

Philip Blakely (LSC) Advanced C++ 211 / 217



Expression Templates

Scalars ctd

Thus, we have to overload operator+ again:

template<int SIZE, typename InternalData1>
Vector<SIZE,VectorAdd<SIZE, Vector<SIZE,InternalData1>,Scalar>>
operator+(const Vector<SIZE, InternalData1>& op1,

const double& op2){
return Vector<SIZE,
VectorAdd<SIZE, Vector<SIZE, InternalData1>, Scalar>>
(VectorAdd<SIZE, Vector<SIZE,InternalData1>, Scalar>(op1,
op2));

}

Note that this only allows v + 3.0. We need another very similar
overload to support 3.0 + v.

However, this is less work than three versions of VectorAdd<>.

Philip Blakely (LSC) Advanced C++ 212 / 217



Expression Templates

Unary operators and functions

For a fully-fledged Vector class you need to overload unary + and
unary - as well.

It is simple to extend the binary operator macros above.

You may also wish to have sin(v) and atan2(v, w) on an
element-wise basis.

This is also straightforward, again using very similar macros to
those above.

Philip Blakely (LSC) Advanced C++ 213 / 217



Expression Templates

How does this work?

Once the full object encapsulating the expression is formed, all the
compiler has to do is optimize the operator[] call.

Since the operator[] functions are all very simple, the compiler
can inline every containing function.

Thus, the operator= function is essentially:

for(size t i=0 ; i < SIZE ; i++){
m data[i] = a.m data[i] + 3∗b.m data[i] + c.m data[i] ∗
d.m data[i];

}

One additional point: the op1 and op2 members of VectorAdd
should be const Op1& for everything except a Scalar.

This avoids copy-constructors as well, and may allow the compiler
to make evern better optimizations.

Philip Blakely (LSC) Advanced C++ 214 / 217



Expression Templates

How does the compiler cope?

The overall type of an expression is very long and complicated.

The C++ standard requires that a compiler support up to 1024
nested template instantiations.

Since each extra operator ends up creating an extra two levels of
nesting, this suggests a maximum of around 512 terms.

512 terms should be enough for anyone...

Note that some of the preceding could be simplified by judicious
use of auto and decltype. However, not making use of these
allows you to appreciate what the compiler actually has to do,
under the hood.

Philip Blakely (LSC) Advanced C++ 215 / 217



Expression Templates

Extensions

Other features you could imagine extending this with would be:

Generic data-type (e.g. bool/float/int/double/complex) -
requires some care with type-promotion (std::common type may
be useful).

Extra element-wise functions, such as minmod().

Logical operator and bitwise overloads for &, && etc.

Conditional operations. Since the ternary operator ? : cannot
be overloaded, you will have to create a function if ().

Some kind of CUDA-kernel back-end. Only the operator= needs
to have a global kernel launch; so long as the operator[] are
host device and the data is all on the GPU, it should

work.

Philip Blakely (LSC) Advanced C++ 216 / 217



Expression Templates

Examples

Complex examples of expression templates include:

GiNaC (https://www.ginac.de/) - a symbolic manipulation
package implemented in C++

FTensor (https://bitbucket.org/wlandry/ftensor/) -
implementation of tensor manipulation and summation convention
in C++

Boost::Yap (https://github.com/boostorg/yap) - allows you to
add expression template semantics to existing classes.

Philip Blakely (LSC) Advanced C++ 217 / 217

https://www.ginac.de/
https://bitbucket.org/wlandry/ftensor/
https://github.com/boostorg/yap

