
Introduction to GPU hardware and to CUDA

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) GPU introduction 1 / 38

Course outline

Introduction to GPU hardware structure and CUDA programming
model

Writing and compiling a simple CUDA code

Example application: 2D Euler equations

Optimization strategies and performance tuning

In-depth coverage of CUDA features

Combining CUDA with MPI.

Philip Blakely (LSC) GPU introduction 2 / 38

Outline

1 CUDA History

2 CUDA Hardware Model

3 Terminology

Philip Blakely (LSC) GPU introduction 3 / 38

References

http://www.nvidia.com/cuda - Official site

http://developer.nvidia.com/cuda-downloads - Drivers,
Compilers, Manuals

On CSC network: /lsc/opt/cuda-11.3/doc/pdf

https://docs.nvidia.com/cuda/

CUDA C Programming Guide
CUDA C Best Practices Guide

Programming Massively Parallel Processors, David B. Kirk, and
Wen-mei W. Hwu (2010)

CUDA by Example, Jason Sanders and Edward Kandrot (2010)

The CUDA Handbook, Nicholas Wilt (2013)

Philip Blakely (LSC) GPU introduction 4 / 38

http://www.nvidia.com/cuda
http://developer.nvidia.com/cuda-downloads
https://docs.nvidia.com/cuda/

Course caveats

Only applicable to NVIDIA GPUs

Assume CUDA-enabled graphics card compute capability > 3.0.

Material relevant to all CUDA-enabled GPUs

Assume good knowledge of C/C++, including simple optimization

Some knowledge of C++ (simple classes and templates)

Assume basic knowledge of Linux command-line

Some knowledge of compilation useful

Experience of parallel algorithms and issues is useful

Linux is assumed (although CUDA is available under Windows
and Mac OS)

Philip Blakely (LSC) GPU introduction 5 / 38

The power of GPUs

All PCs have dedicated graphics cards.

Usually used for realistic rendering in games, visualization, etc.

However, when programmed effectively, GPUs can provide a lot of
computing power:

Live demos

fluidGL

particles

Mandelbrot

Philip Blakely (LSC) GPU introduction 6 / 38

Why should we use GPUs?

Can provide large speed-up over CPU performance

For some applications, a factor of 100 (although that was
comparing a single Intel core with a full NVIDIA GPU).

More typical improvement around ×10 when compared to 8-core
Intel processor.

Relatively cheap - a few hundred pounds - NVIDIA are in gamers’
market

Widely available

Easy to install

Philip Blakely (LSC) GPU introduction 7 / 38

Improved GFLOPS

Theoretical GFLOPS are higher than Intel’s processors (not
entirely clear which processor is being compared to)

Diagram Copyright NVIDIA

Philip Blakely (LSC) GPU introduction 8 / 38

Improved bandwidth

In order to get good performance out of any processor, we need
high bandwidth as well:

Diagram Copyright NVIDIA

Philip Blakely (LSC) GPU introduction 9 / 38

Why shouldn’t we use GPUs?

Speed up with double precision less good than single

Factor of up to 32 difference (very GPU-model dependent) in
performance as opposed to CPU difference of factor 2

Not suitable for all problems - depends on algorithm (array or
matrix operations good, search/sort operations less suited)

Can require a lot of work to get very good performance

May be better to use general multi-core processors with MPI or
OpenMP, or even OpenCL, SYCL, DPC++(GPU agnostic)

Current programming models do not protect the programmer from
themselves (even less than C++)

For some applications, GPU may only give 2.5x advantage over a
fully-used multi-core CPU.

A commercial grade GPU will cost around £2,500, around the
same as a 16-core Intel Xeon server.

Philip Blakely (LSC) GPU introduction 10 / 38

Brief history of GPUs

Graphics cards (for home PCs) first developed in 1990s
Handle graphics rendering, leaving CPU to do complex work
CPU hands over a scene for rendering to graphics card

Early 2000s, get more complex graphics ops. and programmable.
APIs such as OpenGL and Microsoft’s DirectX
Scientific Computing researchers start performing calcs. using
built-in vector ops to do useful work.

Late 2000s, Graphics card companies developed ways to generally
program GPUs

Advent of GPGPUs and general programming languages, e.g.
CUDA (NVIDIA - 2006)
Super computing with GPUs takes off

2010-2021 - NVIDIA progressively improve their GPUs, adding
extra instructions, memory caches, dynamic parallelism, better
C++ support, etc.

Meanwhile, Intel, AMD, and others have been investing in
multi-core computing, producing the Intel Xeon Phi. OpenCL
consortium also started.
Philip Blakely (LSC) GPU introduction 11 / 38

Simplistic hardware structure - typical CPU

Large number of transistors associated with flow control, cache,
etc.

Handles branch prediction, speculative execution, etc.

Philip Blakely (LSC) GPU introduction 12 / 38

Simplistic hardware structure - typical GPU

Larger proportion of transistors associated with floating point
operations.

No branch prediction or speculative execution on GPU cores.

Results in higher theoretical FLOPS as long as we can get the
data there fast enough.

Philip Blakely (LSC) GPU introduction 13 / 38

GPU programming

GPU Programming model:

GPU programming is typically Single Instruction Multiple Data
(SIMD) or SIMT(hread)

Programming for GPUs requires rethinking algorithms and
memory layout.

Best algorithm for CPU not necessarily best for GPU.

Knowledge of GPU hardware required for best performance

GPU programming works best if we:

Perform same operation simultaneously on multiple pieces of data

Organise operations to be as independent as possible

Arrange data in GPU memory to maximise rate of data access

Philip Blakely (LSC) GPU introduction 14 / 38

CUDA language

The CUDA language taught in this course is applicable to
NVIDIA GPUs only.

Other GPU manufacturers exist, e.g. AMD.

CUDA (Compute Unified Device Architecture) is enhanced C++

Contains extensions corresponding to hardware features of the
GPU.

Easy to use (if you know C++)...

but contains much more potential for hard-to-trace errors than
C++ due to the hardware and threaded access.

Philip Blakely (LSC) GPU introduction 15 / 38

Alternatives to CUDA

Caveat: I have not studied any of these...

Microsoft’s DirectCompute (following DirectX)

AMD Stream Computing SDK (AMD-hardware specific)

OpenCL (opencl.org) aims to be applicable to all GPUs.

SYCL (https://www.khronos.org/sycl/) aims to be applicable
to all multicore processors.

PyCUDA (Python wrapper for CUDA)

CLyther (Python wrapper for OpenCL)

Jacket (MatLab or C++ wrapper - commercial)

MatLab’s Parallel Computing Toolbox

Various NVIDIA libraries: cuBLAS, cuSPARSE, cuRAND,
cuFFT, nvGRAPH, and more

Philip Blakely (LSC) GPU introduction 16 / 38

opencl.org
https://www.khronos.org/sycl/

Installing CUDA Drivers and Toolkit

Instructions for latest driver can be found at
https://developer.nvidia.com/cuda-downloads

For Ubuntu, proprietary drivers are in standard repositories but
may not be the absolute latest version

The Toolkit from NVIDIA provides a compiler, libraries,
documentation, and a wide range of examples.

CSC desktops and laptops have NVIDIA drivers and Toolkit
pre-installed.

Philip Blakely (LSC) GPU introduction 17 / 38

https://developer.nvidia.com/cuda-downloads

Compiling a CUDA program

NVIDIA have their own compiler, nvcc (based on Clang).

Uses either g++ or cl (Microsoft) for compiling CPU code.

nvcc needed to compile any CUDA code

CUDA API functions can be compiled with normal compiler (gcc
/ cl)

Compilation

nvcc helloWorld.cu -o helloWorld -O3

Philip Blakely (LSC) GPU introduction 18 / 38

Outline

1 CUDA History

2 CUDA Hardware Model

3 Terminology

Philip Blakely (LSC) GPU introduction 19 / 38

Programming model

CUDA works in terms of threads (Single Instruction Multiple
Thread)

Threads are separate processing elements within a program:

Each executes exactly the same set of instructions,
typically differing only by their thread number,
which can lead to differing data dependencies / execution paths.

Threads execute independently of each other unless explicitly
synchronized (or part of same warp)

Typically threads have access to same memory block as well as
some data local to each thread (and perhaps to a subset of
threads)

i.e. shared-memory paradigm with all the potential issues that
implies.

Philip Blakely (LSC) GPU introduction 20 / 38

Conceptual diagram

Each thread has internal registers (local variables) and access to
global and constant memory

Threads arranged in blocks have access to a common block of
shared memory. Threads can communicate within blocks

A block of threads is run entirely on a single
streaming-multiprocessor on the GPU.

Philip Blakely (LSC) GPU introduction 21 / 38

Conceptual diagram

Each thread has internal registers (local variables) and access to
global and constant memory

Threads arranged in blocks have access to a common block of
shared memory. Threads can communicate within blocks

A block of threads is run entirely on a single
streaming-multiprocessor on the GPU.

Philip Blakely (LSC) GPU introduction 21 / 38

Conceptual diagram

Each thread has internal registers (local variables) and access to
global and constant memory

Threads arranged in blocks have access to a common block of
shared memory. Threads can communicate within blocks

A block of threads is run entirely on a single
streaming-multiprocessor on the GPU.

Philip Blakely (LSC) GPU introduction 21 / 38

Conceptual diagram

Blocks are arranged into a grid. Separate blocks cannot (easily)
communicate as they may be run on separate streaming
multiprocessors.

Communication with CPU is only via global and constant memory.

The GPU cannot request data from the CPU; the CPU must send
data to it.

Philip Blakely (LSC) GPU introduction 22 / 38

Conceptual diagram

Blocks are arranged into a grid. Separate blocks cannot (easily)
communicate as they may be run on separate streaming
multiprocessors.

Communication with CPU is only via global and constant memory.

The GPU cannot request data from the CPU; the CPU must send
data to it.

Philip Blakely (LSC) GPU introduction 22 / 38

Conceptual diagram

Blocks are arranged into a grid. Separate blocks cannot (easily)
communicate as they may be run on separate streaming
multiprocessors.

Communication with CPU is only via global and constant memory.

The GPU cannot request data from the CPU; the CPU must send
data to it.

Philip Blakely (LSC) GPU introduction 22 / 38

Conceptual elaboration

Work for the GPU is written in separate functions called kernels,
called from the main program.

When running a program, you launch one or more blocks of
threads, specifying the number of threads in each block and the
total number of blocks.

Each block of threads is allocated to a Streaming Multiprocessor
(SM) by the hardware.

Each thread has a unique index made up of a thread index and a
block index which are available inside your code.

These are used to distinguish threads in a kernel.

Communication between threads in the same block is possible (via
shared memory or special functions).

Communication between blocks (in the same grid) is not.

Philip Blakely (LSC) GPU introduction 23 / 38

Simple kernel example

global void add(float* a, float* b, float* c, int N)
{
int i = threadIdx.x;
if(i < N)
{
c[i] = a[i] + b[i];

}
}

int main(){
// Call kernel from CPU
add<<<1, N>>>(a,b,c,N);

}

Philip Blakely (LSC) GPU introduction 24 / 38

Hardware specifics

A GPU is made up of several streaming multiprocessors (4 for
Quadro P620, 128 for Tesla A100) each of which consists of 32, 48,
128, or 192 cores.

No. of cores per SM is lower in older cards.

Each SM runs a warp of 32 threads at once (width 32 vectorized
instructions).

Global memory access relatively slow (200-400 clock cycles)

Shared memory access quicker (20-40 cycles - higher bandwidth)

A SM can have many thread blocks allocated at once, but only
runs one at any one time.

The SM can switch rapidly to running other threads to hide
memory latency

Thread registers (local variables) and shared memory for a
thread-block remain on multiprocessor until thread-block finished.

Philip Blakely (LSC) GPU introduction 25 / 38

Streaming Multiprocessor

When launching a kernel each block of threads is assigned to a
Streaming Multiprocessor

All threads run exactly the same kernel code.

All threads in the block run potentially concurrently; do not
assume any particular ordering.

Within a block threads are split into warps of 32 threads which all
execute the same instruction at the same time

Different warps within a block are not necessarily run
simultaneously, but can be synchronized at any point.

All threads in a block have access to some common shared
memory on the SM.

Multiple thread blocks can be allocated on a SM at once,
assuming sufficient memory.

Execution can switch to other blocks if necessary, while holding
other running blocks in memory.

Philip Blakely (LSC) GPU introduction 26 / 38

Hardware limitations

Tesla K20 - Compute capability 3.5 (Release Nov 2012)

13 Multiprocessors, each with 192 cores = 2496 cores.

Per streaming multiprocessor (SM):

65,536 32-bit registers
16-48kB shared memory per SM
16 active blocks

Global:

64kB constant memory
5GB global memory

Maximum threads per block: 1024

Philip Blakely (LSC) GPU introduction 27 / 38

Hardware limitations

Pascal P100 - Compute capability 6.0 (Release April 2016)

56 Multiprocessors, each with 64 cores = 3584 cores

Per streaming multiprocessor (SM):

65,536 32-bit registers
96kB shared memory per SM
32 active blocks

Global:

64kB constant memory
16GB global memory

Maximum threads per block: 1024

Philip Blakely (LSC) GPU introduction 28 / 38

Hardware limitations

Ampere A100 - Compute capability 8.0 (Release May 2020)

108 Multiprocessors, each with 64 cores = 6912 cores

Per streaming multiprocessor (SM):

65,536 32-bit registers
164kB shared memory per SM
32 active blocks

Global:

64kB constant memory
80GB global memory

Maximum threads per block: 1024

Philip Blakely (LSC) GPU introduction 29 / 38

Hardware limitations

If you have a recent NVIDIA GPU in your own PC, it will have
CUDA capability.

If bought recently, this will probably be 6.0 or better.

The commercial-grade GPUs differ only in that they have more
RAM, more SMs, and Error Correcting Code (ECC) memory.

The same applications demonstrated here will run on your own
hardware, so you can often use a local machine for testing

See https://www-internal.lsc.phy.cam.ac.uk/systems.shtml

for CUDA capability details for our machines. (Sadly none > 6.0
as yet.)

Philip Blakely (LSC) GPU introduction 30 / 38

https://www-internal.lsc.phy.cam.ac.uk/systems.shtml

Outline

1 CUDA History

2 CUDA Hardware Model

3 Terminology

Philip Blakely (LSC) GPU introduction 31 / 38

Terminology

Host

The PC’s main CPU and/or RAM

Device

A GPU being used for CUDA operations (usually the GPU global
memory)

Kernel

Block of code to be run on a GPU

Thread

Single running instance of a kernel

Block

Indexed collection of threads

Philip Blakely (LSC) GPU introduction 32 / 38

Terminology continued

Global memory

RAM on a GPU that can be read/written to by any thread

Constant memory

RAM on a GPU that can be read by any thread

Shared memory

RAM on a GPU that can be read/written to by any thread in a block.

Registers

Memory local to each thread.

Latency

Time between issuing an instruction and instruction being completed

Philip Blakely (LSC) GPU introduction 33 / 38

Terminology ctd.

Compute capability

NVIDIA label for what hardware features a graphics card has.
CC Hardware name Release year

3.x Kepler 2012

5.x Maxwell 2014

6.x Pascal 2016

7.x Volta 2017

7.5 Turing 2019

8.0 Ampere 2020

Warps

A warp is a consecutive set of 32 threads within a block that are
executed simultaneously.

If branching occurs within a warp, then code branches execute serially.

Philip Blakely (LSC) GPU introduction 34 / 38

Parallel Correctness

Remember that threads are essentially independent

Cannot make any assumptions about execution order

Blocks may be run in any order within a grid

Algorithm must be designed to work without block-ordering
assumptions

Any attempt to use global memory to pass information between
blocks will probably fail (or at least give unpredictable results)...

The best approach for parallelism is that each thread reads data
from a different array element (and writes to a separate array).

Philip Blakely (LSC) GPU introduction 35 / 38

Simple race-condition

The simple instruction i++ usually results in the operations:

Read value of i into processor register
Increment register
Write i back to memory

If the same instruction occurs on separate threads, and i refers to
the same place in global memory, then the following could occur:

Start with i = 0

Thread 1
Read i

Increment register
Write i

Thread 2

Read i

Increment register
Write i

End with i =2

Philip Blakely (LSC) GPU introduction 36 / 38

Simple race-condition

The simple instruction i++ usually results in the operations:

Read value of i into processor register
Increment register
Write i back to memory

If the same instruction occurs on separate threads, and i refers to
the same place in global memory, then the following could occur:

Start with i = 0

Thread 1
Read i

Increment register
Write i

Thread 2
Read i

Increment register
Write i

End with i =1

Philip Blakely (LSC) GPU introduction 36 / 38

Global memory read/write

Atomic Instruction

Using an atomic instruction will ensure that the reads and writes occur
serially. This will ensure correctness at the expense of performance.

Programming Guide

If a non-atomic instruction executed by a warp writes to the same
location in global or shared memory for more than one of the threads
of the warp, the number of serialized writes that occur to that location
varies depending on the compute capability of the device and which
thread performs the final write is undefined.

In other words: Here be dragons!
Each thread should write to its own global memory location
Ideally, no global memory needing to be read should be written to by
the same kernel.

Philip Blakely (LSC) GPU introduction 37 / 38

Summary

Introduced GPUs - history and their advantages

Described hardware model

and how it relates to the programming model

Defined some terminology for later use

Philip Blakely (LSC) GPU introduction 38 / 38

	CUDA History
	CUDA Hardware Model
	Terminology

