Example application: Two-dimensional Euler solver

Philip Blakely

Laboratory for Scientific Computing, Cambridge

Philip Blakely (LSC)

Example application

Given a computational problem, you have to decide:

- Where the bottlenecks are in a standard CPU version (profile it)
- What speed-up is possible if these are optimized (Amdahl's law)
- Is this part of the code suited to GPUs?
- What degree of optimization can be attained (what factor speed-up)
- Whether this represents good payoff for effort invested
- Whether it would be easier to use MPI and multi-core machine(s)

Problem

Solve Euler's equations in 2D, using finite-volume approach:

		$u_{i,j+1}^n$			
	$u_{i-1,j}^n$	$u_{i,j}^n$	$u_{i+1,j}^n$		
		$u_{i,j-1}^n$			

æ

イロト イ団ト イヨト イヨト

Problem

æ

(4月) (日) (日)

Problem

Solve Euler's equations in 2D, using finite-volume approach:

To update a cell of the grid:

$$u_{i,j}^{n+1} = u_{i,j}^n + \frac{\Delta t}{\Delta x} (F_{i-1/2,j} - F_{i+1/2,j}) + \frac{\Delta t}{\Delta y} (F_{i,j-1/2} - F_{i,j+1/2})$$

Using $\Delta t = 0.95 \times \frac{\Delta x}{\max_{i,j} v}$ Hard part is computing fluxes F.

(4月) (日) (日)

- Bottleneck is flux calculation ($\gtrsim 97\%$ of time) and time-step calculation (most of the rest)
- Suggests at least $30 \times$ speed-up
- Fluxes are computed independently well suited to GPU threads
- HRSC schemes are floating-point-intensive suggests fairly easy gain
- Many simulations take days to run $30 \times$ speed-up worth it
- MPI is routinely used probably use both GPUs and MPI

- Evolve Euler equations in 2D for an ideal gas
- Second order method MUSCL-Hancock (Slope-limited reconstruction with exact Riemann solver)
- Run-time specified parameters:
 - Gamma
 - Grid size
 - Slope-limiter
 - CFL
 - Initial data

イロト イ理ト イヨト イヨト

- Read in parameters
- Allocate memory on GPU
- Set initial data on GPU
- Loop over:
 - Determine time-step on GPU
 - Determine fluxes (x and y directions) on GPU
 - Add fluxes to data on GPU
- Output data (transfer from device to host)

- The full code for this is in Examples/GPUeuler
- Code takes input from euler.in
- CPU/GPU version can be chosen at run-time.
- Methods shown here give $\approx 100 \times$ speed-up (comparing a Tesla GPU with a single core of an Intel i7)
- Not necessarily best way to do everything some aspects chosen for teaching purposes rather than optimal performance.
- No boundary conditions just leave initial data in ghost cells
- Output in out*.ppm

constants.cu

```
-.constant__ int limiter;
..constant__ float g[9];
// Euler equations in 2D needs variables:
enum Vars{RHO, V_X, V_Y, P, NUM_VARS};
enum Limiter{firstOrder, minBee, vanLeer, superBee};
enum Processor {CPU, GPU};
```

- limiter stores the slope-limiter
- g[] stores the adiabatic index γ and related constants (pre-computed for optimization)
- $g[0] = \gamma, g[1] = \frac{\gamma 1}{2\gamma}, g[2] = \frac{\gamma + 1}{2\gamma}, \dots$

イロト イポト イヨト イヨト 二日

main.cu

```
std::cin >> limiter_CPU;
std::cin >> gamma_CPU[0];
gamma_CPU[1] = (gamma_CPU[0]-1)/(2*gamma_CPU[0]);
gamma_CPU[2] = (gamma_CPU[0]+1)/(2*gamma_CPU[0]);
// Put simulation parameters onto GPU
cudaMemcpyToSymbol(limiter, &limiter_CPU, sizeof(limiter),
0, cudaMemcpyHostToDevice);
cudaMemcpyHostToDevice);
cudaMemcpyHostToDevice);
```

3

イロト イ押ト イヨト イヨト

Setting initial data

- We must choose a memory layout.
- Two options:

```
1 \rho_1, v_1^x, v_1^y, p_1, \rho_2, v_2^x, v_2^y, p_2, \ldots
      struct solVector{
         float rho;
         float v_x;
         float v_y;
         float p;};
      solVector data[];
2 \rho_1, \rho_2, \ldots, v_1^x, v_2^x, \ldots, v_1^y,
      struct solVectors{
         float rho[];
         float v_x[];
         float v_v[];
         float p[];};
```

- For CPU, use (1), since a single flux calculation needs to access (ρ, v^x, v^y, p) , all close in memory, caches well.
- For GPU, use (2), so that adjacent threads access adjacent ρs in adjacent memory locations - coalesced global memory access.

The general rule is:

- CPU: Array of Structures
- GPU: Structure of Arrays

This holds true for most applications, even on the latest cards. We shall be computing based on one thread per cell.

- Need to determine a maximum across whole grid
- Want a reduction on a GPU
- Ignore communication between blocks for the moment.
- So, reduce on each block (maximum size 1024) to a single value and reduce the values for each block on the CPU.
- See https://devblogs.nvidia.com/parallelforall/ faster-parallel-reductions-kepler/ for full details.
- Reduction is one of the more complex operations on a GPU; we don't cover it in detail here.

- On a CPU, we would allocate a new array of limited values, and calculate fluxes from these
- Could do the same on GPU. However for instructive purposes we do the whole calculation in one kernel except for final flux addition.

• Updating central cell

- On a CPU, we would allocate a new array of limited values, and calculate fluxes from these
- Could do the same on GPU. However for instructive purposes we do the whole calculation in one kernel except for final flux addition.

- Updating central cell
- Requires flux from left

- On a CPU, we would allocate a new array of limited values, and calculate fluxes from these
- Could do the same on GPU. However for instructive purposes we do the whole calculation in one kernel except for final flux addition.

- Updating central cell
- Requires flux from left
- which requires slope-limited values from cells shown

- On a CPU, we would allocate a new array of limited values, and calculate fluxes from these
- Could do the same on GPU. However for instructive purposes we do the whole calculation in one kernel except for final flux addition.

- Updating central cell
- Requires flux from left
- which requires slope-limited values from cells shown
- which needs data from cells shown

- On a CPU, we would allocate a new array of limited values, and calculate fluxes from these
- Could do the same on GPU. However for instructive purposes we do the whole calculation in one kernel except for final flux addition.

- Updating central cell
- Requires flux from left
- which requires slope-limited values from cells shown
- which needs data from cells shown
- Need cells shown overall to update single cell

- Want threads to share calculations of limited data
- Use shared memory to hold limited data for a block of cells
- Need overlapping blocks to hold required data in shared memory
- For calculating fluxes in x-direction $(6 \times 6 \text{ block})$:

- Want threads to share calculations of limited data
- Use shared memory to hold limited data for a block of cells
- Need overlapping blocks to hold required data in shared memory
- For calculating fluxes in x-direction $(6 \times 6 \text{ block})$:

- Want threads to share calculations of limited data
- Use shared memory to hold limited data for a block of cells
- Need overlapping blocks to hold required data in shared memory
- For calculating fluxes in x-direction $(6 \times 6 \text{ block})$:

- Want threads to share calculations of limited data
- Use shared memory to hold limited data for a block of cells
- Need overlapping blocks to hold required data in shared memory
- For calculating fluxes in x-direction $(6 \times 6 \text{ block})$:

- Want threads to share calculations of limited data
- Use shared memory to hold limited data for a block of cells
- Need overlapping blocks to hold required data in shared memory
- For calculating fluxes in x-direction $(6 \times 6 \text{ block})$:

Grid class

- Class for holding solution data on CPU/GPU
- Could do without it but is instructive

grid.cu struct Grid . . . float* data; int xCells; int yCells; float xMin; float yMin; float xMax; float yMax; Processor proc; };

< □ > < 凸

3

Grid class - ctd

```
// Create a grid with resolution xc*yc and covering
// [x0,y0] x [x1,y1]
Grid(int xc, int yc, float x0, float y0, float x1, float y1,
 Processor p)
{
 xCells = xc;
 yCells = yc;
  xMin = x0;
  xMax = x1;
 yMin = y0;
  yMax = y1;
 proc = p;
  switch(proc)
  case CPU:
    data = new float[xc*yc*NUM_VARS];
   break:
  case GPU:
    cudaMalloc((void **)&data, xc*yc*NUM_VARS*sizeof(float));
   break;
}
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

- Strided access, so that variable index varies the slowest
- Gives coalesced global memory access as required

```
// Access to data as r-value
__device__ __host__
float operator()(int i, int j, int v)const
{
    return data[i + j*xCells + v*xCells*yCells];
}
// Access to data as l-value
__device__ __host__
float& operator()(int i, int j, int v)
{
    return data[i + j*xCells + v*xCells*yCells];
}
```

- Using overlapping thread-blocks
- First one has width blockSize.x
- Rest cover an extra blockSize.x 2*overlap.x cells each

Number of thread-blocks in x dimension given by:

$$1 + \left\lceil \frac{\text{xCells} - \text{blockSize.x}}{\text{blockSize.x} - 2 \times \text{overlap.x}} \right\rceil$$

See the earlier diagram to convince yourself of this.

- We want to use shared memory as much as possible
- Shared memory best accessed using stride 1 so need functions
 - dealing with arbitrary stride (either 1 or full volume)
 - and some that transform in place without using extra shared memory/registers

Euler-specific functions

idealGas.cu

```
--device.. void
    primitiveToConservative(const
    float* prim, const int pStride,
    float* cons, const int cStride)
{
}
```

Calculate conserved variables from primitive variables with general strided vectors **prim** and **cons** where the adjacent elements of **prim** are separated by **pStride** in memory.

idealGas.cu

```
if( g.contains(i,j) )
{
    primitiveToConservativeInPlace(&g(i,j,RHO),
    g.stride());
}
```

See Examples/slic.cu for full code.

• For each cell, need data from three cells to compute slope-limited values.

1) Load four cell-centred solution vectors into shared memory

See Examples/slic.cu for full code.

• For each cell, need data from three cells to compute slope-limited values.

2) Load left data into shared memory

See Examples/slic.cu for full code.

• For each cell, need data from three cells to compute slope-limited values.

3) Load right data into shared memory

See Examples/slic.cu for full code.

• For each cell, need data from three cells to compute slope-limited values.

4) Now have three vectors per thread in shared memory

	Thread $i-1$	Thread i	Thread $i+1$
Initial	u_{i-2}, u_{i-1}, u_i	u_{i-1}, u_i, u_{i+1}	u_i, u_{i+1}, u_{i+2}

æ

メロト メポト メヨト メヨト

	Thread $i-1$	Thread i	Thread $i+1$
Initial	u_{i-2}, u_{i-1}, u_i	u_{i-1}, u_i, u_{i+1}	u_i, u_{i+1}, u_{i+2}
Reconstruct	$u_{i-1}^L, u_{i-1}, u_{i-1}^R$	u_i^L, u_i, u_i^R	$u_{i+1}^L, u_{i+1}, u_{i+1}^R$

æ

* ロト * 個 ト * 注 ト * 注 >

	Thread $i-1$	Thread i	Thread $i+1$
Initial	u_{i-2}, u_{i-1}, u_i	u_{i-1}, u_i, u_{i+1}	u_i, u_{i+1}, u_{i+2}
Reconstruct	$u_{i-1}^L, u_{i-1}, u_{i-1}^R$	u_i^L,u_i,u_i^R	$u_{i+1}^L, u_{i+1}, u_{i+1}^R$
Slope limit	$u_{i-1}^{L*}, u_{i-1}, u_{i-1}^{R*}$	u_i^{L*},u_i,u_i^{R*}	$u_{i+1}^{L*}, u_{i+1}, u_{i+1}^{R*}$

æ

* ロト * 個 ト * 注 ト * 注 >

	Thread $i-1$	Thread i	Thread $i+1$
Initial	u_{i-2}, u_{i-1}, u_i	u_{i-1}, u_i, u_{i+1}	u_i, u_{i+1}, u_{i+2}
Reconstruct	$u_{i-1}^L, u_{i-1}, u_{i-1}^R$	u_i^L,u_i,u_i^R	$u_{i+1}^L, u_{i+1}, u_{i+1}^R$
Slope limit	$u_{i-1}^{L*}, u_{i-1}, u_{i-1}^{R*}$	u_i^{L*},u_i,u_i^{R*}	$u_{i+1}^{L*}, u_{i+1}, u_{i+1}^{R*}$
Advance $\frac{1}{2}\Delta t$	$\overline{u}_{i-1}^L, u_{i-1}, \overline{u}_{i-1}^R$	$\overline{u}_i^L,u_i,\overline{u}_i^R$	$\overline{u}_{i+1}^L, u_{i+1}, \overline{u}_{i+1}^R$

æ

メロト メポト メヨト メヨト

	Thread $i-1$	Thread i	Thread $i+1$
Initial	u_{i-2}, u_{i-1}, u_i	u_{i-1}, u_i, u_{i+1}	u_i, u_{i+1}, u_{i+2}
Reconstruct	$u_{i-1}^L, u_{i-1}, u_{i-1}^R$	u_i^L,u_i,u_i^R	$u_{i+1}^L, u_{i+1}, u_{i+1}^R$
Slope limit	$u_{i-1}^{L*}, u_{i-1}, u_{i-1}^{R*}$	u_i^{L*}, u_i, u_i^{R*}	$u_{i+1}^{L*}, u_{i+1}, u_{i+1}^{R*}$
Advance $\frac{1}{2}\Delta t$	$\overline{u}_{i-1}^L, u_{i-1}, \overline{u}_{i-1}^R$	$\overline{u}_i^L,u_i,\overline{u}_i^R$	$\overline{u}_{i+1}^L, u_{i+1}, \overline{u}_{i+1}^R$
svncthreads()			

æ

* ロト * 個 ト * 注 ト * 注 >

	Thread $i-1$	Thread i	Thread $i+1$	
Initial	u_{i-2}, u_{i-1}, u_i	u_{i-1}, u_i, u_{i+1}	u_i, u_{i+1}, u_{i+2}	
Reconstruct	$u_{i-1}^L, u_{i-1}, u_{i-1}^R$	u_i^L,u_i,u_i^R	$u_{i+1}^L, u_{i+1}, u_{i+1}^R$	
Slope limit	$u_{i-1}^{L*}, u_{i-1}, u_{i-1}^{R*}$	u_i^{L*},u_i,u_i^{R*}	$u_{i+1}^{L*}, u_{i+1}, u_{i+1}^{R*}$	
Advance $\frac{1}{2}\Delta t$	$\overline{u}_{i-1}^L, u_{i-1}, \overline{u}_{i-1}^R$	$\overline{u}_i^L,u_i,\overline{u}_i^R$	$\overline{u}_{i+1}^L, u_{i+1}, \overline{u}_{i+1}^R$	
syncthreads()				
Solve R.P.	$f(\overline{u}_{i-2}^R,\overline{u}_{i-1}^L)$	$f(\overline{u}_{i-1}^R, \overline{u}_i^L)$	$f(\overline{u}_i^R, \overline{u}_{i+1}^L)$	

æ

* ロト * 個 ト * 注 ト * 注 >

	Thread $i-1$	Thread i	Thread $i+1$	
Initial	u_{i-2}, u_{i-1}, u_i	u_{i-1}, u_i, u_{i+1}	u_i, u_{i+1}, u_{i+2}	
Reconstruct	$u_{i-1}^L, u_{i-1}, u_{i-1}^R$	u_i^L,u_i,u_i^R	$u_{i+1}^L, u_{i+1}, u_{i+1}^R$	
Slope limit	$u_{i-1}^{L*}, u_{i-1}, u_{i-1}^{R*}$	u_i^{L*},u_i,u_i^{R*}	$u_{i+1}^{L*}, u_{i+1}, u_{i+1}^{R*}$	
Advance $\frac{1}{2}\Delta t$	$\overline{u}_{i-1}^L, u_{i-1}, \overline{u}_{i-1}^R$	$\overline{u}_i^L,u_i,\overline{u}_i^R$	$\overline{u}_{i+1}^L, u_{i+1}, \overline{u}_{i+1}^R$	
syncthreads()				
Solve R.P.	$f(\overline{u}_{i-2}^R,\overline{u}_{i-1}^L)$	$f(\overline{u}_{i-1}^R,\overline{u}_i^L)$	$f(\overline{u}_i^R, \overline{u}_{i+1}^L)$	
syncthreads()				

æ

メロト メポト メヨト メヨト

	Thread $i-1$	Thread i	Thread $i + 1$	
Initial	u_{i-2}, u_{i-1}, u_i	u_{i-1}, u_i, u_{i+1}	u_i, u_{i+1}, u_{i+2}	
Reconstruct	$u_{i-1}^L, u_{i-1}, u_{i-1}^R$	u_i^L,u_i,u_i^R	$u_{i+1}^L, u_{i+1}, u_{i+1}^R$	
Slope limit	$u_{i-1}^{L*}, u_{i-1}, u_{i-1}^{R*}$	u_i^{L*},u_i,u_i^{R*}	$u_{i+1}^{L*}, u_{i+1}, u_{i+1}^{R*}$	
Advance $\frac{1}{2}\Delta t$	$\overline{u}_{i-1}^L, u_{i-1}, \overline{u}_{i-1}^R$	$\overline{u}_i^L,u_i,\overline{u}_i^R$	$\overline{u}_{i+1}^L, u_{i+1}, \overline{u}_{i+1}^R$	
syncthreads()				
Solve R.P.	$f(\overline{u}_{i-2}^R,\overline{u}_{i-1}^L)$	$f(\overline{u}_{i-1}^R,\overline{u}_i^L)$	$f(\overline{u}_i^R,\overline{u}_{i+1}^L)$	
$\syncthreads()$				
Final Flux	$\Delta t \times (f_{i-2} - f_{i-1})$	$\Delta t \times (f_{i-1} - f_i)$	$\Delta t \times (f_i - f_{i+1})$	

æ

メロト メポト メヨト メヨト

	Thread $i-1$	Thread i	Thread $i + 1$	
Initial	u_{i-2}, u_{i-1}, u_i	u_{i-1}, u_i, u_{i+1}	u_i, u_{i+1}, u_{i+2}	
Reconstruct	$u_{i-1}^L, u_{i-1}, u_{i-1}^R$	u_i^L,u_i,u_i^R	$u_{i+1}^L, u_{i+1}, u_{i+1}^R$	
Slope limit	$u_{i-1}^{L*}, u_{i-1}, u_{i-1}^{R*}$	u_i^{L*},u_i,u_i^{R*}	$u_{i+1}^{L*}, u_{i+1}, u_{i+1}^{R*}$	
Advance $\frac{1}{2}\Delta t$	$\overline{u}_{i-1}^L, u_{i-1}, \overline{u}_{i-1}^R$	$\overline{u}_i^L,u_i,\overline{u}_i^R$	$\overline{u}_{i+1}^L, u_{i+1}, \overline{u}_{i+1}^R$	
$\syncthreads()$				
Solve R.P.	$f(\overline{u}_{i-2}^R,\overline{u}_{i-1}^L)$	$f(\overline{u}_{i-1}^R,\overline{u}_i^L)$	$f(\overline{u}_i^R,\overline{u}_{i+1}^L)$	
$__$ syncthreads()				
Final Flux	$\Delta t \times (f_{i-2} - f_{i-1})$	$\Delta t \times (f_{i-1} - f_i)$	$\Delta t \times (f_i - f_{i+1})$	

- Functions such as fluxInPlace(u) mean that we only need 4 solution vectors per thread. But, for a 32 × 32 block:
- Overall shared-memory: 4 * NUM_VARS * blockDim.y *

blockDim.x * sizeof(float)
= 16,384 bytes

- The Riemann solver is very similar to that in a CPU code
- It uses an iterative method to calculate the final pressure.
- We assume solution vectors are in shared memory and therefore strided
- Make frequent use of prim_L[P * stride] construct
- No real way to reduce branching due to iterations within Riemann solver
- Plausibly, neighbouring cells might need similar number of iterations in solver, so divergent branching is avoided.
- However, this is not true in general.

Adding the flux in the x-direction

```
--syncthreads();
//Only put flux into global memory if we're not on the ghost
cells of the current thread block and not on ghost cells of
whole grid
if(coord == 0 && 0 < threadIdx.x && threadIdx.x <
blockDim_x-1 && fluxToCalculate)
{
  for(int v=0; v < NUM_VARS; v++)
    flux(i,j,v) = dt/dCoords.x *
  (temp[1][v][threadIdx.y][threadIdx.x] -
   temp[1][v][threadIdx.y][threadIdx.x+1]);
}
```

- Perform the addition in a separate kernel
- Now do not need overlapping thread-blocks
- Adding flux is completely local and correctly coalesced due to structure of arrays approach.

```
template<int coord>
__global__ void addFlux_GPU(Grid u, Grid flux)
ł
  const int i = blockIdx.x * blockDim.x +
   threadIdx.x; //x-index on main grid
  const int j = blockIdx.y * blockDim.y +
   threadIdx.y;//y-index on main grid
  const int i_left_limit = (coord == 0) ? 2 : 0;
  const int i_right_limit = (coord == 0) ? u.xCells - 2 :
   u.xCells:
  const int j_left_limit = (coord == 1) ? 2 : 0;
  const int j_right_limit = (coord == 1) ? u.yCells - 2 :
   u.yCells;
  if( i >= i_left_limit && j >=j_left_limit && i <
    i_right_limit \&\& j < j_right_limit )
  {
    for(int v=0 ; v < NUM_VARS ; v++)</pre>
      u(i,j,v) += flux(i,j,v);
  }
}
```

э

· · · · · · · · ·

We should now check how fast our implementation goes Benchmark with:

- 1000×1000 cells
- CFL 0.95
- 2D Riemann problem initial-data
- Adiabatic index $\gamma = 1.4$
- van Leer limiter
- End time T=0.2s

Result: 6.65s (on tycho - Tesla K20c)

Templating

In expressions such as

```
const int dim_x = blockDim_x - ((coord == 0) ? 2 : 0);
const int dim_y = blockDim_y - ((coord == 1) ? 2 : 0);
const float* u_left = &u( i - ((coord==0) ? 1 : 0 ), j -
 ((coord==1) ? 1 : 0 ), RHO);
const float* u_right = &u( i + ((coord==0) ? 1 : 0 ), j +
 ((coord==1) ? 1 : 0 ), RHO);
```

divergent branching isn't a problem.

- However, some instructions are needed to branch on coord
- So get the compiler to evaluate branching

```
template<int blockDim_x, int blockDim_y, int coord>
__global__ void getSLICflux_GPU(Grid u, Grid flux, float dt)
```

```
const int xSizeXsolve=8, ySizeXsolve=8; //Block size when
solving for x-fluxes
getSLICflux.GPU<xSizeXsolve, ySizeXsolve, 0><<xSLICgrid,
xSLICblocks>>>(grid, flux, dt);
```

This gives at least some speed-up over branching version: Result: 5.80s (on poros - Quadro K620)

Philip Blakely (LSC)

What block-size should we use? (x-direction)

- When performing SLIC update, want to reduce no. of overlap cells
- For a grid of 1000×1000 cells, solving for x-fluxes
- Tesla K20c has 48kB shared-memory per SM.

• We modify slic.cu

Block size	Overall time
16×16	5.54s
32×8	5.41s
8×32	5.91s
32×16	6.34s
16×32	6.62s

- First 3 lines can have 3 thread blocks per multiprocessor.
- Last two lines are limited to 1 thread block per multiprocessor.
- Latency cannot be hidden as easily by swapping execution to different thread blocks.

What block-size should we use? (y-direction)

- In y direction, different effects come into play
- For global memory access coalesence, want to read several adjacent cells in *x*-direction.
- So, 8×32 is not the obvious answer
- For a grid of 1000×1000 cells, solving for y-fluxes:

Block size	Overall time
16×16	5.14s
32×8	5.38s
8×32	5.08s
32×16	6.07s
16×32	5.98s

• (with x-block 32×8)

- Actually, it turns out 8×32 is the unobvious answer...
- This seems to be card dependent (earlier cards had different answers).

Initially, performed update as:

- calcFlux(u, flux, X_COORD) flux = $f^x(u)$
- addFlux(u, flux) $u = u + f^x(u)$
- calcFlux(u, flux, Y_COORD) flux = $f^y(u)$

• addFlux(u, flux)
$$u = u + f^y(u)$$

Instead, we can calculate updated solution directly in extra array:

- advanceSoln(u, u_plus, X_COORD) $u^+ = u + f^x(u)$
- advanceSoln(u_plus, u, Y_COORD) $u = u^+ + f^y(u^+)$ This gives an extra 8% speed-up

- Optimizing an algorithm for CUDA can be tricky.
- Requires some thought to make best use of shared memory and reduce arithmetic operations.
- In practice, this may not make a dramatic speed-up.
- We went from 6.65s to 5.08s (24% time-saving) but with quite a lot of effort.
- However, being aware of available hardware characteristics is important.