
Example application: Two-dimensional Euler solver

Philip Blakely

Laboratory for Scientific Computing, Cambridge

Philip Blakely (LSC) Example application 1 / 34

From problem to optimized solution

Given a computational problem, you have to decide:

Where the bottlenecks are in a standard CPU version (profile it)

What speed-up is possible if these are optimized (Amdahl’s law)

Is this part of the code suited to GPUs?

What degree of optimization can be attained (what factor
speed-up)

Whether this represents good payoff for effort invested

Whether it would be easier to use MPI and multi-core machine(s)

Philip Blakely (LSC) Example application 2 / 34

Problem

Solve Euler’s equations in 2D, using finite-volume approach:

Philip Blakely (LSC) Example application 3 / 34

Problem

Solve Euler’s equations in 2D, using finite-volume approach:

Philip Blakely (LSC) Example application 3 / 34

Problem

Solve Euler’s equations in 2D, using finite-volume approach:

Philip Blakely (LSC) Example application 3 / 34

Update formula

To update a cell of the grid:

un+1
i,j = uni,j +

∆t

∆x
(Fi−1/2,j − Fi+1/2,j) +

∆t

∆y
(Fi,j−1/2 − Fi,j+1/2)

Using ∆t = 0.95 × ∆x
maxi,jv

Hard part is computing fluxes F .

Philip Blakely (LSC) Example application 4 / 34

Potential gain analysis

Bottleneck is flux calculation (& 97% of time) and time-step
calculation (most of the rest)

Suggests at least 30× speed-up

Fluxes are computed independently - well suited to GPU threads

HRSC schemes are floating-point-intensive - suggests fairly easy
gain

Many simulations take days to run - 30× speed-up worth it

MPI is routinely used - probably use both GPUs and MPI

Philip Blakely (LSC) Example application 5 / 34

Specifications

Evolve Euler equations in 2D for an ideal gas

Second order method - MUSCL-Hancock (Slope-limited
reconstruction with exact Riemann solver)

Run-time specified parameters:

Gamma
Grid size
Slope-limiter
CFL
Initial data

Philip Blakely (LSC) Example application 6 / 34

Application outline

Read in parameters

Allocate memory on GPU

Set initial data on GPU

Loop over:

Determine time-step on GPU
Determine fluxes (x and y directions) on GPU
Add fluxes to data on GPU

Output data (transfer from device to host)

Philip Blakely (LSC) Example application 7 / 34

Overview

The full code for this is in Examples/GPUeuler

Code takes input from euler.in

CPU/GPU version can be chosen at run-time.

Methods shown here give ≈ 100× speed-up (comparing a Tesla
GPU with a single core of an Intel i7)

Not necessarily best way to do everything - some aspects chosen
for teaching purposes rather than optimal performance.

No boundary conditions - just leave initial data in ghost cells

Output in out*.ppm

Philip Blakely (LSC) Example application 8 / 34

Reading in parameters

constants.cu

constant int limiter;
constant float g[9];

// Euler equations in 2D needs variables:
enum Vars{RHO, V X, V Y, P, NUM VARS};

enum Limiter{firstOrder, minBee, vanLeer, superBee};

enum Processor {CPU, GPU};

limiter stores the slope-limiter

g[] stores the adiabatic index γ and related constants
(pre-computed for optimization)

g[0]= γ, g[1]= γ−1
2γ , g[2]= γ+1

2γ , . . .

Philip Blakely (LSC) Example application 9 / 34

Setting global variables

main.cu

std::cin >> limiter CPU;
std::cin >> gamma CPU[0];
gamma CPU[1] = (gamma CPU[0]−1)/(2*gamma CPU[0]);
gamma CPU[2] = (gamma CPU[0]+1)/(2*gamma CPU[0]);

// Put simulation parameters onto GPU
cudaMemcpyToSymbol(limiter, &limiter CPU, sizeof(limiter),
0, cudaMemcpyHostToDevice);

cudaMemcpyToSymbol(g, &gamma CPU, sizeof(gamma CPU), 0,
cudaMemcpyHostToDevice);

Philip Blakely (LSC) Example application 10 / 34

Setting initial data

We must choose a memory layout.
Two options:

1 ρ1, v
x
1 , v

y
1 , p1, ρ2, v

x
2 , v

y
2 , p2, . . .

struct solVector{
float rho;
float v x;
float v y;
float p;};

solVector data[];

2 ρ1, ρ2, . . . , v
x
1 , v

x
2 , . . . , v

y
1 ,

struct solVectors{
float rho[];
float v x[];
float v y[];
float p[];};

For CPU, use (1), since a single flux calculation needs to access
(ρ, vx, vy, p), all close in memory, caches well.

For GPU, use (2), so that adjacent threads access adjacent ρs in
adjacent memory locations - coalesced global memory access.
Philip Blakely (LSC) Example application 11 / 34

Data layout

The general rule is:

CPU: Array of Structures

GPU: Structure of Arrays

This holds true for most applications, even on the latest cards.
We shall be computing based on one thread per cell.

Philip Blakely (LSC) Example application 12 / 34

Determine time-step

Need to determine a maximum across whole grid

Want a reduction on a GPU

Ignore communication between blocks for the moment.

So, reduce on each block (maximum size 1024) to a single value
and reduce the values for each block on the CPU.

See https://devblogs.nvidia.com/parallelforall/

faster-parallel-reductions-kepler/ for full details.

Reduction is one of the more complex operations on a GPU; we
don’t cover it in detail here.

Philip Blakely (LSC) Example application 13 / 34

https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

Determine time-step ctd

Sketch diagram of reduction of 8 elements.
Time increases down the page; threadIdx increases left to right.

Philip Blakely (LSC) Example application 14 / 34

Determine time-step ctd

Sketch diagram of reduction of 8 elements.
Time increases down the page; threadIdx increases left to right.

Philip Blakely (LSC) Example application 14 / 34

Determine time-step ctd

Sketch diagram of reduction of 8 elements.
Time increases down the page; threadIdx increases left to right.

Philip Blakely (LSC) Example application 14 / 34

Determine time-step ctd

Sketch diagram of reduction of 8 elements.
Time increases down the page; threadIdx increases left to right.

Philip Blakely (LSC) Example application 14 / 34

Determine time-step ctd

Sketch diagram of reduction of 8 elements.
Time increases down the page; threadIdx increases left to right.

Philip Blakely (LSC) Example application 14 / 34

Determine fluxes

On a CPU, we would allocate a new array of limited values, and
calculate fluxes from these

Could do the same on GPU. However for instructive purposes we
do the whole calculation in one kernel except for final flux
addition.

Updating central cell

Requires flux from left

which requires slope-limited values from cells shown

which needs data from cells shown

Need cells shown overall to update single cell

Philip Blakely (LSC) Example application 15 / 34

Determine fluxes

On a CPU, we would allocate a new array of limited values, and
calculate fluxes from these

Could do the same on GPU. However for instructive purposes we
do the whole calculation in one kernel except for final flux
addition.

Updating central cell

Requires flux from left

which requires slope-limited values from cells shown

which needs data from cells shown

Need cells shown overall to update single cell

Philip Blakely (LSC) Example application 15 / 34

Determine fluxes

On a CPU, we would allocate a new array of limited values, and
calculate fluxes from these

Could do the same on GPU. However for instructive purposes we
do the whole calculation in one kernel except for final flux
addition.

Updating central cell

Requires flux from left

which requires slope-limited values from cells shown

which needs data from cells shown

Need cells shown overall to update single cell

Philip Blakely (LSC) Example application 15 / 34

Determine fluxes

On a CPU, we would allocate a new array of limited values, and
calculate fluxes from these

Could do the same on GPU. However for instructive purposes we
do the whole calculation in one kernel except for final flux
addition.

Updating central cell

Requires flux from left

which requires slope-limited values from cells shown

which needs data from cells shown

Need cells shown overall to update single cell

Philip Blakely (LSC) Example application 15 / 34

Determine fluxes

On a CPU, we would allocate a new array of limited values, and
calculate fluxes from these

Could do the same on GPU. However for instructive purposes we
do the whole calculation in one kernel except for final flux
addition.

Updating central cell

Requires flux from left

which requires slope-limited values from cells shown

which needs data from cells shown

Need cells shown overall to update single cell

Philip Blakely (LSC) Example application 15 / 34

Determine fluxes ctd.

Want threads to share calculations of limited data

Use shared memory to hold limited data for a block of cells

Need overlapping blocks to hold required data in shared memory

For calculating fluxes in x-direction (6 × 6 block):

Philip Blakely (LSC) Example application 16 / 34

Determine fluxes ctd.

Want threads to share calculations of limited data

Use shared memory to hold limited data for a block of cells

Need overlapping blocks to hold required data in shared memory

For calculating fluxes in x-direction (6 × 6 block):

Philip Blakely (LSC) Example application 16 / 34

Determine fluxes ctd.

Want threads to share calculations of limited data

Use shared memory to hold limited data for a block of cells

Need overlapping blocks to hold required data in shared memory

For calculating fluxes in x-direction (6 × 6 block):

Philip Blakely (LSC) Example application 16 / 34

Determine fluxes ctd.

Want threads to share calculations of limited data

Use shared memory to hold limited data for a block of cells

Need overlapping blocks to hold required data in shared memory

For calculating fluxes in x-direction (6 × 6 block):

Philip Blakely (LSC) Example application 16 / 34

Determine fluxes ctd.

Want threads to share calculations of limited data

Use shared memory to hold limited data for a block of cells

Need overlapping blocks to hold required data in shared memory

For calculating fluxes in x-direction (6 × 6 block):

Philip Blakely (LSC) Example application 16 / 34

Grid class

Class for holding solution data on CPU/GPU

Could do without it - but is instructive

grid.cu

struct Grid
{

...
float* data;
int xCells;
int yCells;
float xMin;
float yMin;
float xMax;
float yMax;
Processor proc;

};

Philip Blakely (LSC) Example application 17 / 34

Grid class - ctd

// Create a grid with resolution xc*yc and covering
// [x0,y0] x [x1,y1]
Grid(int xc, int yc, float x0, float y0, float x1, float y1,
Processor p)
{
xCells = xc;
yCells = yc;
xMin = x0;
xMax = x1;
yMin = y0;
yMax = y1;

proc = p;

switch(proc)
{
case CPU:

data = new float[xc*yc*NUM VARS];
break;

case GPU:
cudaMalloc((void **)&data, xc*yc*NUM VARS*sizeof(float));
break;

}
}
Philip Blakely (LSC) Example application 18 / 34

Grid class - ctd

Strided access, so that variable index varies the slowest

Gives coalesced global memory access as required

// Access to data as r−value
device host

float operator()(int i, int j, int v)const
{
return data[i + j*xCells + v*xCells*yCells];

}

// Access to data as l−value
device host

float& operator()(int i, int j, int v)
{
return data[i + j*xCells + v*xCells*yCells];

}

Philip Blakely (LSC) Example application 19 / 34

Grid class - thread block layout

Using overlapping thread-blocks

First one has width blockSize.x

Rest cover an extra blockSize.x - 2*overlap.x cells each

Number of thread-blocks in x dimension given by:

1 +

⌈
xCells − blockSize.x

blockSize.x − 2 × overlap.x

⌉
See the earlier diagram to convince yourself of this.

Philip Blakely (LSC) Example application 20 / 34

Considerations for shared-memory

We want to use shared memory as much as possible

Shared memory best accessed using stride 1 so need functions

dealing with arbitrary stride (either 1 or full volume)
and some that transform in place without using extra shared
memory/registers

Philip Blakely (LSC) Example application 21 / 34

Euler-specific functions

idealGas.cu

device void
primitiveToConservative(const
float* prim, const int pStride,
float* cons, const int cStride)

{
}

Calculate conserved variables from primitive variables
with general strided vectors prim and cons where the adjacent
elements of prim are separated by pStride in memory.

idealGas.cu

if(g.contains(i,j))
{
primitiveToConservativeInPlace(&g(i,j,RHO),
g.stride());
}

Philip Blakely (LSC) Example application 22 / 34

Loading global data into shared memory

See Examples/slic.cu for full code.

For each cell, need data from three cells to compute slope-limited
values.

1) 2)

3) 4)

1) Load four cell-centred solution vectors into shared memory

Philip Blakely (LSC) Example application 23 / 34

Loading global data into shared memory

See Examples/slic.cu for full code.

For each cell, need data from three cells to compute slope-limited
values.

1) 2)

3) 4)

2) Load left data into shared memory

Philip Blakely (LSC) Example application 23 / 34

Loading global data into shared memory

See Examples/slic.cu for full code.

For each cell, need data from three cells to compute slope-limited
values.

1) 2)

3) 4)

3) Load right data into shared memory

Philip Blakely (LSC) Example application 23 / 34

Loading global data into shared memory

See Examples/slic.cu for full code.

For each cell, need data from three cells to compute slope-limited
values.

1) 2)

3) 4)

4) Now have three vectors per thread in shared memory

Philip Blakely (LSC) Example application 23 / 34

Within shared memory

Thread i− 1 Thread i Thread i+ 1

Initial ui−2, ui−1, ui ui−1, ui, ui+1 ui, ui+1, ui+2

Reconstruct uLi−1, ui−1, uRi−1 uLi , ui, u
R
i uLi+1, ui+1, uRi+1

Slope limit uL∗i−1, ui−1, uR∗
i−1 uL∗i , ui, u

R∗
i uL∗i+1, ui+1, uR∗

i+1

Advance 1
2∆t uLi−1, ui−1, uRi−1 uLi , ui, u

R
i uLi+1, ui+1, uRi+1

syncthreads()

Solve R.P. f(uRi−2, u
L
i−1) f(uRi−1, u

L
i) f(uRi , u

L
i+1)

syncthreads()

Final Flux ∆t× (fi−2 − fi−1) ∆t× (fi−1 − fi) ∆t× (fi − fi+1)

Functions such as fluxInPlace(u) mean that we only need 4
solution vectors per thread. But, for a 32 × 32 block:

Overall shared-memory: 4 * NUM VARS * blockDim.y *

blockDim.x * sizeof(float)

= 16,384 bytes

Philip Blakely (LSC) Example application 24 / 34

Within shared memory

Thread i− 1 Thread i Thread i+ 1

Initial ui−2, ui−1, ui ui−1, ui, ui+1 ui, ui+1, ui+2

Reconstruct uLi−1, ui−1, uRi−1 uLi , ui, u
R
i uLi+1, ui+1, uRi+1

Slope limit uL∗i−1, ui−1, uR∗
i−1 uL∗i , ui, u

R∗
i uL∗i+1, ui+1, uR∗

i+1

Advance 1
2∆t uLi−1, ui−1, uRi−1 uLi , ui, u

R
i uLi+1, ui+1, uRi+1

syncthreads()

Solve R.P. f(uRi−2, u
L
i−1) f(uRi−1, u

L
i) f(uRi , u

L
i+1)

syncthreads()

Final Flux ∆t× (fi−2 − fi−1) ∆t× (fi−1 − fi) ∆t× (fi − fi+1)

Functions such as fluxInPlace(u) mean that we only need 4
solution vectors per thread. But, for a 32 × 32 block:

Overall shared-memory: 4 * NUM VARS * blockDim.y *

blockDim.x * sizeof(float)

= 16,384 bytes

Philip Blakely (LSC) Example application 24 / 34

Within shared memory

Thread i− 1 Thread i Thread i+ 1

Initial ui−2, ui−1, ui ui−1, ui, ui+1 ui, ui+1, ui+2

Reconstruct uLi−1, ui−1, uRi−1 uLi , ui, u
R
i uLi+1, ui+1, uRi+1

Slope limit uL∗i−1, ui−1, uR∗
i−1 uL∗i , ui, u

R∗
i uL∗i+1, ui+1, uR∗

i+1

Advance 1
2∆t uLi−1, ui−1, uRi−1 uLi , ui, u

R
i uLi+1, ui+1, uRi+1

syncthreads()

Solve R.P. f(uRi−2, u
L
i−1) f(uRi−1, u

L
i) f(uRi , u

L
i+1)

syncthreads()

Final Flux ∆t× (fi−2 − fi−1) ∆t× (fi−1 − fi) ∆t× (fi − fi+1)

Functions such as fluxInPlace(u) mean that we only need 4
solution vectors per thread. But, for a 32 × 32 block:

Overall shared-memory: 4 * NUM VARS * blockDim.y *

blockDim.x * sizeof(float)

= 16,384 bytes

Philip Blakely (LSC) Example application 24 / 34

Within shared memory

Thread i− 1 Thread i Thread i+ 1

Initial ui−2, ui−1, ui ui−1, ui, ui+1 ui, ui+1, ui+2

Reconstruct uLi−1, ui−1, uRi−1 uLi , ui, u
R
i uLi+1, ui+1, uRi+1

Slope limit uL∗i−1, ui−1, uR∗
i−1 uL∗i , ui, u

R∗
i uL∗i+1, ui+1, uR∗

i+1

Advance 1
2∆t uLi−1, ui−1, uRi−1 uLi , ui, u

R
i uLi+1, ui+1, uRi+1

syncthreads()

Solve R.P. f(uRi−2, u
L
i−1) f(uRi−1, u

L
i) f(uRi , u

L
i+1)

syncthreads()

Final Flux ∆t× (fi−2 − fi−1) ∆t× (fi−1 − fi) ∆t× (fi − fi+1)

Functions such as fluxInPlace(u) mean that we only need 4
solution vectors per thread. But, for a 32 × 32 block:

Overall shared-memory: 4 * NUM VARS * blockDim.y *

blockDim.x * sizeof(float)

= 16,384 bytes

Philip Blakely (LSC) Example application 24 / 34

Within shared memory

Thread i− 1 Thread i Thread i+ 1

Initial ui−2, ui−1, ui ui−1, ui, ui+1 ui, ui+1, ui+2

Reconstruct uLi−1, ui−1, uRi−1 uLi , ui, u
R
i uLi+1, ui+1, uRi+1

Slope limit uL∗i−1, ui−1, uR∗
i−1 uL∗i , ui, u

R∗
i uL∗i+1, ui+1, uR∗

i+1

Advance 1
2∆t uLi−1, ui−1, uRi−1 uLi , ui, u

R
i uLi+1, ui+1, uRi+1

syncthreads()

Solve R.P. f(uRi−2, u
L
i−1) f(uRi−1, u

L
i) f(uRi , u

L
i+1)

syncthreads()

Final Flux ∆t× (fi−2 − fi−1) ∆t× (fi−1 − fi) ∆t× (fi − fi+1)

Functions such as fluxInPlace(u) mean that we only need 4
solution vectors per thread. But, for a 32 × 32 block:

Overall shared-memory: 4 * NUM VARS * blockDim.y *

blockDim.x * sizeof(float)

= 16,384 bytes

Philip Blakely (LSC) Example application 24 / 34

Within shared memory

Thread i− 1 Thread i Thread i+ 1

Initial ui−2, ui−1, ui ui−1, ui, ui+1 ui, ui+1, ui+2

Reconstruct uLi−1, ui−1, uRi−1 uLi , ui, u
R
i uLi+1, ui+1, uRi+1

Slope limit uL∗i−1, ui−1, uR∗
i−1 uL∗i , ui, u

R∗
i uL∗i+1, ui+1, uR∗

i+1

Advance 1
2∆t uLi−1, ui−1, uRi−1 uLi , ui, u

R
i uLi+1, ui+1, uRi+1

syncthreads()

Solve R.P. f(uRi−2, u
L
i−1) f(uRi−1, u

L
i) f(uRi , u

L
i+1)

syncthreads()

Final Flux ∆t× (fi−2 − fi−1) ∆t× (fi−1 − fi) ∆t× (fi − fi+1)

Functions such as fluxInPlace(u) mean that we only need 4
solution vectors per thread. But, for a 32 × 32 block:

Overall shared-memory: 4 * NUM VARS * blockDim.y *

blockDim.x * sizeof(float)

= 16,384 bytes

Philip Blakely (LSC) Example application 24 / 34

Within shared memory

Thread i− 1 Thread i Thread i+ 1

Initial ui−2, ui−1, ui ui−1, ui, ui+1 ui, ui+1, ui+2

Reconstruct uLi−1, ui−1, uRi−1 uLi , ui, u
R
i uLi+1, ui+1, uRi+1

Slope limit uL∗i−1, ui−1, uR∗
i−1 uL∗i , ui, u

R∗
i uL∗i+1, ui+1, uR∗

i+1

Advance 1
2∆t uLi−1, ui−1, uRi−1 uLi , ui, u

R
i uLi+1, ui+1, uRi+1

syncthreads()

Solve R.P. f(uRi−2, u
L
i−1) f(uRi−1, u

L
i) f(uRi , u

L
i+1)

syncthreads()

Final Flux ∆t× (fi−2 − fi−1) ∆t× (fi−1 − fi) ∆t× (fi − fi+1)

Functions such as fluxInPlace(u) mean that we only need 4
solution vectors per thread. But, for a 32 × 32 block:

Overall shared-memory: 4 * NUM VARS * blockDim.y *

blockDim.x * sizeof(float)

= 16,384 bytes

Philip Blakely (LSC) Example application 24 / 34

Within shared memory

Thread i− 1 Thread i Thread i+ 1

Initial ui−2, ui−1, ui ui−1, ui, ui+1 ui, ui+1, ui+2

Reconstruct uLi−1, ui−1, uRi−1 uLi , ui, u
R
i uLi+1, ui+1, uRi+1

Slope limit uL∗i−1, ui−1, uR∗
i−1 uL∗i , ui, u

R∗
i uL∗i+1, ui+1, uR∗

i+1

Advance 1
2∆t uLi−1, ui−1, uRi−1 uLi , ui, u

R
i uLi+1, ui+1, uRi+1

syncthreads()

Solve R.P. f(uRi−2, u
L
i−1) f(uRi−1, u

L
i) f(uRi , u

L
i+1)

syncthreads()

Final Flux ∆t× (fi−2 − fi−1) ∆t× (fi−1 − fi) ∆t× (fi − fi+1)

Functions such as fluxInPlace(u) mean that we only need 4
solution vectors per thread. But, for a 32 × 32 block:

Overall shared-memory: 4 * NUM VARS * blockDim.y *

blockDim.x * sizeof(float)

= 16,384 bytes

Philip Blakely (LSC) Example application 24 / 34

Within shared memory

Thread i− 1 Thread i Thread i+ 1

Initial ui−2, ui−1, ui ui−1, ui, ui+1 ui, ui+1, ui+2

Reconstruct uLi−1, ui−1, uRi−1 uLi , ui, u
R
i uLi+1, ui+1, uRi+1

Slope limit uL∗i−1, ui−1, uR∗
i−1 uL∗i , ui, u

R∗
i uL∗i+1, ui+1, uR∗

i+1

Advance 1
2∆t uLi−1, ui−1, uRi−1 uLi , ui, u

R
i uLi+1, ui+1, uRi+1

syncthreads()

Solve R.P. f(uRi−2, u
L
i−1) f(uRi−1, u

L
i) f(uRi , u

L
i+1)

syncthreads()

Final Flux ∆t× (fi−2 − fi−1) ∆t× (fi−1 − fi) ∆t× (fi − fi+1)

Functions such as fluxInPlace(u) mean that we only need 4
solution vectors per thread. But, for a 32 × 32 block:

Overall shared-memory: 4 * NUM VARS * blockDim.y *

blockDim.x * sizeof(float)

= 16,384 bytes

Philip Blakely (LSC) Example application 24 / 34

Riemann solver

The Riemann solver is very similar to that in a CPU code

It uses an iterative method to calculate the final pressure.

We assume solution vectors are in shared memory and therefore
strided

Make frequent use of prim L[P * stride] construct

No real way to reduce branching due to iterations within Riemann
solver

Plausibly, neighbouring cells might need similar number of
iterations in solver, so divergent branching is avoided.

However, this is not true in general.

Philip Blakely (LSC) Example application 25 / 34

Storing the final flux

Adding the flux in the x-direction

syncthreads();

//Only put flux into global memory if we’re not on the ghost
cells of the current thread block and not on ghost cells of
whole grid

if(coord == 0 && 0 < threadIdx.x && threadIdx.x <
blockDim x−1 && fluxToCalculate)
{
for(int v=0 ; v < NUM VARS ; v++)

flux(i,j,v) = dt/dCoords.x *
(temp[1][v][threadIdx.y][threadIdx.x] −
temp[1][v][threadIdx.y][threadIdx.x+1]);
}

Philip Blakely (LSC) Example application 26 / 34

Adding the final flux

Perform the addition in a separate kernel

Now do not need overlapping thread-blocks

Adding flux is completely local and correctly coalesced due to
structure of arrays approach.

Philip Blakely (LSC) Example application 27 / 34

Adding the final flux

template<int coord>
global void addFlux GPU(Grid u, Grid flux)
{
const int i = blockIdx.x * blockDim.x +
threadIdx.x;//x−index on main grid

const int j = blockIdx.y * blockDim.y +
threadIdx.y;//y−index on main grid

const int i left limit = (coord == 0) ? 2 : 0;
const int i right limit = (coord == 0) ? u.xCells − 2 :
u.xCells;

const int j left limit = (coord == 1) ? 2 : 0;
const int j right limit = (coord == 1) ? u.yCells − 2 :
u.yCells;

if(i >= i left limit && j >=j left limit && i <
i right limit && j < j right limit)
{
for(int v=0 ; v < NUM VARS ; v++)

u(i,j,v) += flux(i,j,v);
}

}

Philip Blakely (LSC) Example application 28 / 34

How fast?

We should now check how fast our implementation goes
Benchmark with:

1000 × 1000 cells

CFL 0.95

2D Riemann problem initial-data

Adiabatic index γ = 1.4

van Leer limiter

End time T=0.2s

Result: 6.65s (on tycho - Tesla K20c)

Philip Blakely (LSC) Example application 29 / 34

Templating

In expressions such as

const int dim x = blockDim x − ((coord == 0) ? 2 : 0);
const int dim y = blockDim y − ((coord == 1) ? 2 : 0);
const float* u left = &u(i − ((coord==0) ? 1 : 0), j −
((coord==1) ? 1 : 0), RHO);

const float* u right = &u(i + ((coord==0) ? 1 : 0), j +
((coord==1) ? 1 : 0),RHO);

divergent branching isn’t a problem.

However, some instructions are needed to branch on coord

So get the compiler to evaluate branching

template<int blockDim x, int blockDim y, int coord>
global void getSLICflux GPU(Grid u, Grid flux, float dt)

const int xSizeXsolve=8, ySizeXsolve=8; //Block size when
solving for x−fluxes

getSLICflux GPU<xSizeXsolve, ySizeXsolve, 0><<<xSLICgrid,
xSLICblocks>>>(grid, flux, dt);

This gives at least some speed-up over branching version:
Result: 5.80s (on poros - Quadro K620)

Philip Blakely (LSC) Example application 30 / 34

What block-size should we use? (x-direction)

When performing SLIC update, want to reduce no. of overlap cells

For a grid of 1000 × 1000 cells, solving for x-fluxes

Tesla K20c has 48kB shared-memory per SM.

We modify slic.cu

Block size Overall time

16 × 16 5.54s

32 × 8 5.41s

8 × 32 5.91s

32 × 16 6.34s

16 × 32 6.62s

First 3 lines can have 3 thread blocks per multiprocessor.

Last two lines are limited to 1 thread block per multiprocessor.

Latency cannot be hidden as easily by swapping execution to
different thread blocks.

Philip Blakely (LSC) Example application 31 / 34

What block-size should we use? (y-direction)

In y direction, different effects come into play

For global memory access coalesence, want to read several
adjacent cells in x-direction.

So, 8 × 32 is not the obvious answer

For a grid of 1000 × 1000 cells, solving for y-fluxes:

(with x-block 32 × 8)

Block size Overall time

16 × 16 5.14s

32 × 8 5.38s

8 × 32 5.08s

32 × 16 6.07s

16 × 32 5.98s

Actually, it turns out 8 × 32 is the unobvious answer...

This seems to be card dependent (earlier cards had different
answers).

Philip Blakely (LSC) Example application 32 / 34

Avoid flux-update kernel

Initially, performed update as:

calcFlux(u, flux, X COORD) flux = fx(u)

addFlux(u, flux) u = u+ fx(u)

calcFlux(u, flux, Y COORD) flux = fy(u)

addFlux(u, flux) u = u+ fy(u)

Instead, we can calculate updated solution directly in extra array:

advanceSoln(u, u plus, X COORD) u+ = u+ fx(u)

advanceSoln(u plus, u, Y COORD) u = u+ + fy(u+)

This gives an extra 8% speed-up

Philip Blakely (LSC) Example application 33 / 34

Conclusion

Optimizing an algorithm for CUDA can be tricky.

Requires some thought to make best use of shared memory and
reduce arithmetic operations.

In practice, this may not make a dramatic speed-up.

We went from 6.65s to 5.08s (24% time-saving) but with quite a
lot of effort.

However, being aware of available hardware characteristics is
important.

Philip Blakely (LSC) Example application 34 / 34

