
Debugging and Optimization strategies

Philip Blakely

Laboratory for Scientific Computing, Cambridge

Philip Blakely (LSC) Optimization 1 / 28

Outline

1 Correctness

2 Warp-based functions

3 Atomics

4 Debugging

Philip Blakely (LSC) Optimization 2 / 28

Writing a correct CUDA code

You should start with a functional CPU/serial code

If possible, port small parts to GPU at a time

Codes should give exactly the same results at all times

If possible, display intermediate results to test individual kernels

A lot of the difficulty with CUDA is thinking about parallelism in
the right way, and working out which threads and blocks should
do what work.

Philip Blakely (LSC) Optimization 3 / 28

Error checking

Always make use of error-return codes

Use cudaGetLastError()

Common errors:

Mixing up host and device pointers - use e.g. hData[], dData[]
naming convention
Reversing direction of copying in cudaMemcpy()

cudaMemcpy(dest, src, numBytes, cudaMemcpyKind)

Allocating too little memory - cudaMalloc needs no. of bytes - use
sizeof()

float3 *a;
a = cudaMalloc((void **)&a, sizeof(float3) * N);

Most of these will be flagged by cuda-gdb or cuda-memcheck.

Philip Blakely (LSC) Optimization 4 / 28

Floating point mismatch

Moving from CPU code to GPU code will lead to changes in
floating-point results

Recall that floating point addition is non-associative

Upshot: If you are summing in parallel, result may be different
from serial result

Extra FMA (Floating-Multiply-Add) instructions on GPUs can
also affect result. See Floating Point on NVIDIA GPU.pdf

Consider whether you need single-precision or double-precision
arithmetic. Former is faster (by at least factor of 8) but may not
be accurate enough for scientific computing.

If any of this leads to stability problems - rethink your algorithm

Philip Blakely (LSC) Optimization 5 / 28

Indexing errors

Always check correct calculation of indexes

Usually blockIdx.x * blockDim.x + threadIdx.x

May have different expressions depending on distribution of data
between threads/thread-blocks

Always check for out-of-bounds access

It’s common to have redundant threads that shouldn’t access data
- make sure they have an appropriate if statement to make them
do nothing

Philip Blakely (LSC) Optimization 6 / 28

Race conditions

If your code occasionally gives errors or gives different results for the
same input, you’ve probably got a race condition, i.e. the final state of
code is dependent on order of execution of threads/blocks.

Avoiding race conditions

Never assume thread blocks are executed in a particular order

Distinct thread blocks should not depend on each other’s results

Best approach is for a kernel to take data from one global array
and compute a result into another array.

Do not use the same array for input and output.

Race conditions may also emerge when moving to a larger GPU as
there are more SMs which can run more thread-blocks simultaneously.

Philip Blakely (LSC) Optimization 7 / 28

Global memory race conditions

Usually occur when two or more threads update global memory
value independently

No guarantee in which order they will occur

No guarantee which will succeed

General rule: Avoid updating same global memory location from
distinct threads

(Unless you use atomic instructions, in which case you may have
performance problems instead.)

Philip Blakely (LSC) Optimization 8 / 28

Shared memory race conditions

Occur when distinct threads within a thread-block update single
shared memory location independently

These can be overcome by correct use of syncthreads()

Ensures that all threads in block have reached same point in kernel

General advice: When using shared memory, check use of
syncthreads()

It may be possible to avoid some of this due to threads in the
same warp advancing in lock-step.

Philip Blakely (LSC) Optimization 9 / 28

Outline

1 Correctness

2 Warp-based functions

3 Atomics

4 Debugging

Philip Blakely (LSC) Optimization 10 / 28

Warp vote functions

Recall that a warp of 32 threads is guaranteed to run in lock-step.

We may need a logical reduction operation (AND/OR) between
threads in a warp.

We could use shared memory for this, but NVIDIA have provided
specialised warp-functions that apply to sets of 32 threads only.

In the following, note that an unsigned int is assumed to have 32
bits.

Philip Blakely (LSC) Optimization 11 / 28

Warp vote functions

The following functions allow communication between all threads in a
single warp (32 threads):

int all sync(unsigned int mask, int predicate);

returns non-zero value if and only if predicate is non-zero on all
active threads for which the relevant bit of mask is 1.
(This is a logical AND across all threads in mask.)

int any sync(unsigned int mask, int predicate);

returns non-zero value iff predicate is non-zero on at least one
(active) thread in the warp, for which the relevant bit of mask is 1.
(This is a logical OR across all threads in mask.)

Philip Blakely (LSC) Optimization 12 / 28

Warp vote functions ctd.

unsigned int ballot sync(unsigned int mask, int predicate);

returns an integer whose Nth bit is set iff predicate is non-zero
on thread N and bit N of mask is set.

unsigned int activemask();

returns an integer whose Nth bit is set iff thread N is currently
active.

Philip Blakely (LSC) Optimization 13 / 28

Warp shuffle functions

When implementing a tree-based reduction operation, we may
need to communicate more data efficiently between threads in a
warp.

Here, thread N needs to combine its data with that of thread
N + 16.

(Then thread N combines data with thread N + 8, N + 4, etc.)

For this, we have warp shuffle functions.

Philip Blakely (LSC) Optimization 14 / 28

Warp shuffle functions

T shfl up sync(unsigned int mask, T var, unsigned int delta);

returns the value of var from the thread delta below the current
one in the warp. If the current lane is less than delta, then var is
returned unchanged.
The exchange is only carried out for active threads set in mask.

Similarly, shfl down sync exists to get data from the thread delta

above the current one. So, a tree reduction to find a maximum could
be performed using:

var = max(var, shfl down sync(0xFFFFFFFF, var, 16));
var = max(var, shfl down sync(0xFFFFFFFF, var, 8));
var = max(var, shfl down sync(0xFFFFFFFF, var, 4));
var = max(var, shfl down sync(0xFFFFFFFF, var, 2));
var = max(var, shfl down sync(0xFFFFFFFF, var, 1));

Philip Blakely (LSC) Optimization 15 / 28

Warp shuffle functions

T shfl sync(unsigned int mask, T var, int src);

returns the value of var from thread srcLane.
The exchange is only carried out for active threads set in mask.

This is effectively a broadcast from thread src to all other active
threads in the warp.

Philip Blakely (LSC) Optimization 16 / 28

Warp-size note

Programming Guide

If applications have warp-synchronous codes, they will need to insert
the syncwarp() warp-wide barrier synchronization instruction
between any steps where data is exchanged between threads via global
or shared memory. Assumptions that code is executed in lockstep or
that reads/writes from separate threads are visible across a warp
without synchronization are invalid.

Philip Blakely (LSC) Optimization 17 / 28

Outline

1 Correctness

2 Warp-based functions

3 Atomics

4 Debugging

Philip Blakely (LSC) Optimization 18 / 28

Atomic functions

In machine-code, an instruction such as i += 1
where i is in global or shared memory requires three instructions:

Read i into a register
Increment i
Write i back to memory

which results in a potential race condition.

CUDA hardware provides atomic instructions that perform some
simple operations on shared or global data in one instruction.

Philip Blakely (LSC) Optimization 19 / 28

Atomic functions

T atomicAdd(T* address, T val);

adds val to the value stored at address and returns the original
value of *address.
T can be any 16-,32-,64-bit type (subject to hardware - see
Appendix K).

Other atomic instructions exist: atomicSub(), atomicMax(),
atomicMin(), atomicExch(), atomicInc(), atomicDec(),
atomicAnd(), atomicOr(), atomicXor()
but there are various restrictions on what types these apply to.

Atomic Compare-And-Swap:

T atomicCAS(T* old, T compare, T val);
// equivalent to
*old = (*old == compare)? val : *old;

Philip Blakely (LSC) Optimization 20 / 28

Atomic instructions notes

Example use: Keep a count of how many thread-blocks have
completed using atomicInc.

Avoids race condition issue of using global memory as a index -
but you still don’t know what order updates will occur in

Note that due to the extra locking overhead, using atomic
instructions from hundreds of threads may cause poor
performance. However, one atomic instruction per block (for
example) should be OK.

Most atomic operations only available for integer and 32-bit float
operations except for atomicAdd() for 64-bit floats on Pascal
architecture (CC > 6.0).

See the CUDA C Programming Guide for full details.

Philip Blakely (LSC) Optimization 21 / 28

Outline

1 Correctness

2 Warp-based functions

3 Atomics

4 Debugging

Philip Blakely (LSC) Optimization 22 / 28

Basic debugging

Often the easiest form of debugging is printf statements

Output for all printf statements encountered will be emitted on
host

For full print syntax, use man printf:

printf("Thread %d v = %lf\n", threadIdx.x, v);

Alternatively, use assert(i) which will abort the program if i is
zero on any thread.

No guarantee about which order print statements will occur in
from different threads

Philip Blakely (LSC) Optimization 23 / 28

Basic debugging

The output buffer is of limited size (1MB), and is dumped to
screen at kernel launch or at cudaDeviceSynchronize()

If the buffer fills up, further output will overwrite the earliest
output

The buffer size can be increased using cudaDeviceSetLimit()

This feature should therefore only be used as a quick-and-dirty
debugging tool.

Upshot: printf may be helpful but abscence of output does not
imply absence of thread reaching a particular point.

Philip Blakely (LSC) Optimization 24 / 28

Use of a debugger

The cuda-gdb debugger is an extension of gdb

Need to compile with -g -G options.

Note that -G turns off optimization. For code profiling, use
-lineinfo.

The debugger allows explicit switching between threads/blocks
and checking of values

Allows stepping through kernels line-by-line

Not part of the practicals, as I’ve had problems using it in the
past, and it locks up the compute card on which a kernel is being
debugged.

See /lsc/opt/cuda-11.3/doc/pdf/cuda-gdb.pdf

Philip Blakely (LSC) Optimization 25 / 28

cuda-memcheck

In a similar way to valgrind, cuda-memcheck can check for simple
out-of-bounds memory access.

Ill-formed CUDA program

global void f(float* a, int N)
{
int idx = blockDim.x * blockIdx.x + threadIdx.x;

a[idx] = sinf(idx);
}

Philip Blakely (LSC) Optimization 26 / 28

Memcheck output

cuda-memcheck output

========= CUDA-MEMCHECK

========= Invalid __global__ write of size 4

========= at 0x00000498 in f

========= by thread (32,0,0) in block (2,0)

========= Address 0x00201080 is out of bounds

=========

========= ERROR SUMMARY: 1 error

See /lsc/opt/cuda-11.3/doc/pdf/CUDA Memcheck.pdf

Philip Blakely (LSC) Optimization 27 / 28

Memcheck continued

memcheck is capable of a large number of checks:

Out-of-bounds access check

Malloc/free error-checks

CUDA API checks (although you should be doing this anyway)

Memory leaks

Race condition checks for shared memory (tool=--racecheck)

Uninitialized data usage (tool=--initcheck)

Synchronization errors (tool=--synccheck)

Finally, setting the environment variable CUDA LAUNCH BLOCKING=1 will
cause CUDA kernels to be performed synchronously.

Philip Blakely (LSC) Optimization 28 / 28

	Correctness
	Warp-based functions
	Atomics
	Debugging

