
CUDA optimization

Philip Blakely

Laboratory for Scientific Computing, Cambridge

Philip Blakely (LSC) CUDA features 1 / 41

Outline

1 Should we optimize

2 Memory layout

3 Streaming Multiprocessor usage

4 Code optimizations

5 Which optimizations

6 Larger CUDA programs

Philip Blakely (LSC) CUDA features 2 / 41

To consider first...

Is it worth optimizing it?

In scientific computing, answer usually “yes”...

unless it takes a lot of effort to implement ...

or you’re only going to use it once.

But - only optimize actual bottlenecks

No point in optimizing part of the code that takes 1% of the
run-time.

Use NVIDIA Nsight nsys-ui to check where bottle-necks occur.

(Slightly tricky to set up; need to match CUDA Driver with
NSight exactly, and set some kernel permissions.)

Philip Blakely (LSC) CUDA features 3 / 41

Are you making progress?

Optimization can be fun - and time-consuming.

Include timing to make sure optimizations actually work!

Some techniques suggested here may either not make a large
difference or may worsen performance if they affect some other
aspect of the algorithm

You need a feel of how different techniques can affect performance

The techniques presented here are in rough order of potential
improvements, starting with those most likely to give good
speed-up.

Start with a working code, and check at all stages whether the
results are still correct.

Philip Blakely (LSC) CUDA features 4 / 41

Change the algorithm

Outside the scope of this course...

Best serial algorithm not necessarily the best parallel algorithm

For example, there exist explicitly parallelised versions of sorting
algorithms

If you’re following a one-element-per-cell approach, then this is
probably the best approach.

(Unless there is little work per thread, in which case do multiple
cells per thread in a loop.)

Do some reading around your field/algorithm, see what has been
done before (even back to 1970s).

Take care - a parallel algorithm suited to a small cluster may not
scale well for massively parallel architecures.

Philip Blakely (LSC) CUDA features 5 / 41

Use more than one GPU

Previously, a code could be sped up using multiple cores / CPUs

This is still the case for GPUs

See next lecture for combining MPI with GPUs

Likely to give good speed-up

Philip Blakely (LSC) CUDA features 6 / 41

Outline

1 Should we optimize

2 Memory layout

3 Streaming Multiprocessor usage

4 Code optimizations

5 Which optimizations

6 Larger CUDA programs

Philip Blakely (LSC) CUDA features 7 / 41

Device-Host memory transfer

GPUs have their advantage in on-GPU memory-bandwidth, and in
multi-processors

Device↔Host memory transfers are relatively slow

(slower than global memory to SM bandwidth by an order of
magnitude)

It may be an advantage to do more calculation on device rather
than send data back to host and calculate there even if the extra
calculation is not very well parallelisable

Philip Blakely (LSC) CUDA features 8 / 41

Global memory coalescence

On-device memory-bandwidth is only attained if the access is
coalesced

Read the Programming Guide carefully

Use NVIDIA Nsight

Reconsider your data-layout

Write small test-codes to optimize

Best not to access global memory too much:

Make use of shared memory as much as possible

Much faster access than global memory

May be useful to do “in-place” operations (see euler.cu) to
reduce shared-memory usage

Philip Blakely (LSC) CUDA features 9 / 41

Outline

1 Should we optimize

2 Memory layout

3 Streaming Multiprocessor usage

4 Code optimizations

5 Which optimizations

6 Larger CUDA programs

Philip Blakely (LSC) CUDA features 10 / 41

Occupancy

Recall that multiple thread blocks can reside on a multiprocessor
and can be switched rapidly to avoid memory latency

So multiple blocks can start while other blocks wait for memory
reads

So if many thread blocks can fit on a multiprocessor, we can hide
latency

The number of blocks that can be held on a multiprocessor is
limited by

Shared memory use
Register use

Reduce these to increase occupancy (but only up to about 25% is
worth it)

Low occupancy usually degrades performance

Philip Blakely (LSC) CUDA features 11 / 41

Calculating occupancy

Consider a typical NVIDIA GPU:

Each multiprocessor has

32,768 32-bit registers
1536 simultaneous threads
48KB shared memory

so need < 22 registers per thread for 100% occupancy, i.e. all
threads held in the SM simultaneously.

and (for 512-thread blocks):
48× 1024× 512

1536 = 16384 bytes of shared-memory per block

Occupancy =

No. of active warps per multiprocessor,
given registers/shared memory

Max no. of warps per multiprocessor

Usually easier to use the occupancy spreadsheet
/lsc/opt/cuda-11.3/tools/CUDA Occupancy Calculator.xls

Philip Blakely (LSC) CUDA features 12 / 41

Check register and shared-memory usage

Compile using -Xptxas -v option:
nvcc euler.cu -o euler -O3 -Xptxas -v

...

ptxas info : Compiling entry function

’ Z15getSLICflux GPUILi16ELi32ELi1EEv4Gridf’ for ’sm 61’

ptxas info : Function properties for

Z15getSLICflux GPUILi16ELi32ELi1EEv4Gridf

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill

loads

ptxas info : Used 50 registers, 34816 bytes smem, 364

bytes

cmem[0], 108 bytes cmem[2]

Philip Blakely (LSC) CUDA features 13 / 41

Check register and shared-memory usage

Translation:

Function void getSLICflux GPU<16,32,1>(Grid, float) uses:

50 registers per thread,

34816 bytes user-allocated shared memory,

364 bytes of user-defined constant memory

108 bytes of compiler-generated constants in constant memory

where c++filt was used to turn the kernel name into something
readable.

Philip Blakely (LSC) CUDA features 14 / 41

Occupancy spreadsheet example

Recall the Euler example from earlier

The shared memory approach uses 4140 bytes of shared memory
for 8× 8 blocks and 36 registers

Which of these affects occupancy?

According to the Occupancy spreadsheet, both do.

In this case, not a substantial difference.

Philip Blakely (LSC) CUDA features 15 / 41

Reduce registers

Use --maxrregcount to force fewer registers to be used.

Register overspill goes into local memory, which has same latency
as global memory.

However, if reducing registers increases occupancy, it can be
beneficial.

Hand-tuning the code to reduce registers can work

Approximately equivalent to reducing local variables in function

Philip Blakely (LSC) CUDA features 16 / 41

Outline

1 Should we optimize

2 Memory layout

3 Streaming Multiprocessor usage

4 Code optimizations

5 Which optimizations

6 Larger CUDA programs

Philip Blakely (LSC) CUDA features 17 / 41

Make the compiler do the work

The compiler is very good at optimizing if you give it a chance

Make as many constants available at compile-time as possible

Can use templates to do this (see euler.cu)

template<int coord> void global getFlux();

getFlux<0><<<gridDim, blockDim>>>();

Branching and calculations dependent on coord can be optimized
out.

The CUDA compiler appears to optimize certain constructs fairly
aggressively, such as constant-size loops

Exact mathematical expressions such as sin(9.8) do not appear to
be optimized out
(there could be accuracy issues with doing so anyway)

Philip Blakely (LSC) CUDA features 18 / 41

Loop counters

In loops, use signed integers, rather than unsigned.

May be the opposite to what you thought

Overflow on signed integers is undefined (in C++) so compiler can
get away without overflow checks for signed arithmetic

for (i = 0; i < n; i++) {
out[i] = in[offset + stride*i];

}

stride*i could overflow, so it’s up to you to ensure that it doesn’t.

Philip Blakely (LSC) CUDA features 19 / 41

Branching

Recall that threads in a warp will run in step where possible.

If different threads take different branches, threads taking different
branches execute sequentially.

So, make sure all threads take the same branch

Or reduce amount of branching as much as possible.

Diagnose this using the CUDA visual profiler.

Philip Blakely (LSC) CUDA features 20 / 41

Precision

Warning

The following suggestions may well affect the accuracy of your code.
Use them only if you know this is not a problem. Test your code with
and without these suggestions and compare results.

Use single precision unless double is absolutely necessary.

Factor of 8 slowdown on older cards, factor of at least 2 even on
latest cards

Use the --use fast math compiler option - faster versions of exp,
sin, cos etc.

Use the --ftz, --prec-div, and --prec-sqrt compiler options.

For those really concerned about IEEE 754 accuracy, see Appendix E
of the Programming Guide.

Philip Blakely (LSC) CUDA features 21 / 41

Instruction counting

When most other methods have been applied, instruction counting
may be useful.

The CUDA Programming Guide contains clock-cycle counts for
various instructions (5.4.1)

For example: (compute capability 6.0)

32-bit floating-point add/multiply:
64 instructions/clock-cycle
64-bit floating-point add/multiply:
32 instructions/clock-cycle
32-bit floating-point reciprocal, reciprocal square-root, sine/cosine:
16 instructions/clock-cycle

Type conversions:
16 instructions/clock-cycle

General rule: Reduce the number of expensive operations.
Use temporary variables to help the compiler if necessary.

Philip Blakely (LSC) CUDA features 22 / 41

Special functions

Can sometimes replace branching by special floating point or
bit-wise operations

copysign(x,y) and signbit(x)

sincos(x, sptr, cptr)

For integer operations: See CUDA Math API.pdf
Includes bit-counting functions such as popc.

Or search for “Bit Twiddling Hacks” (S.E. Anderson):
r = y ^ ((x ^ y) & -(x < y)); // min(x, y)

(Interesting read even if you don’t need these techniques)

Philip Blakely (LSC) CUDA features 23 / 41

C++

C++ can be used to make code more readable while allowing compiler
to optimize as usual
Using expression templates:

a = b + 3.2 * c − d*e;

in CPU code might be expanded to

global (float* a, float* b, float* c, float* d,
float* e, int N)

{
const int i = ...;
a[i] = b[i] + 3.2f * c[i] − d[i]*e[i];

}

by the compiler alone.
See “C++ Templates” - Vandevoorde & Josuttis for details

Philip Blakely (LSC) CUDA features 24 / 41

Outline

1 Should we optimize

2 Memory layout

3 Streaming Multiprocessor usage

4 Code optimizations

5 Which optimizations

6 Larger CUDA programs

Philip Blakely (LSC) CUDA features 25 / 41

Optimization approaches

First - check whether algorithm is bandwidth or instruction bound

Imagine two stripped-down versions of the code:
1 No calculation - just appropriate memory reads/writes
2 No memory reads/writes - just calculation (be careful the compiler

can’t optimize them away)

Compare times for all three versions (including original)

In the ideal case, the full version is much faster than sum of its
parts

Why? Executing instructions can hide memory latency

See whether memory access or calculations take longer, and
optimize accordingly

In practice, Nsight System or Nsight Compute can give the same
kind of thing (so long as you have a recent GPU...)

Philip Blakely (LSC) CUDA features 26 / 41

Bandwidth bound

If your kernel is bandwidth bound:

Check for global-memory read coalescence

Use shared memory as programmer-designed cache

Use constant memory if there are e.g. stencil coefficients used in
all kernels

Rethink data-structures - Struct-Of-Arrays versus
Array-Of-Structs

Philip Blakely (LSC) CUDA features 27 / 41

Compute-bound

If your kernel is compute bound (less likely):

Strength-reduction
1 Replace multiplication by shift operation or addition if possible
2 Replace division by multiplication by reciprocal
3 Reduce number of operations - use algebraic identities if possible

a*x*x*x + b*x*x + c*x + d == d + x*(c + x*(b + a*x))

4 Reduce use of pow() if possible
5 Avoid expensive recomputation - precompute values and store in

temporary variables

Reduce (divergent) branching

Philip Blakely (LSC) CUDA features 28 / 41

Latency-bound

If sum of memory-access and compute versions is about the same as
standard kernel, you’re latency bound, i.e. the hardware cannot overlap
the memory-access and computation.

Move memory-reads to early in kernel - allows instructions that
don’t need data to execute and hide memory-read time

Reduce number of syncthreads() - while maintaining
correctness

Increase thread-block occupancy

Reduce shared-memory use
Reduce register-use

(Allows threads to be swapped out while their data is fetched from
global memory).

Increase the amount of data processed per kernel launch

Philip Blakely (LSC) CUDA features 29 / 41

Outline

1 Should we optimize

2 Memory layout

3 Streaming Multiprocessor usage

4 Code optimizations

5 Which optimizations

6 Larger CUDA programs

Philip Blakely (LSC) CUDA features 30 / 41

C++ support

NVIDIA cards all support full C++ (arbitrary pointer dereference)

Unified address space for all variables and pointers

Virtual functions, function pointers are allowed on device

new and delete are supported (probably not efficiently)

Ideally, you should probably keep code at this level on the CPU
and use the GPU for pure computation.

However, for more complex codes, may be necessary to use these
features.

Philip Blakely (LSC) CUDA features 31 / 41

Software development

If writing anything longer than a single algorithm, see the
Software Design course.

nvcc can compile all C++ code

C++ control code should be kept separate from kernels and kernel
calls

Run-time API calls can be put in C++ code and compiled with
gcc - suffix .C

Kernels and the <<<...>>> calls should be put in .cu files and
compiled with nvcc

A device or global function does not have to be in the
same file as the call to it (unless templating is involved).

Philip Blakely (LSC) CUDA features 32 / 41

Linking across object files

When compiling an object file with device code, use:
nvcc -dc a.cu -o a.o

Similar to -c option for gcc

When linking separate objects containing device code, use:
nvcc -dlink a.o b.o -o myProg

However, the CUDA compiler now cannot inline device functions
called between files, and must introduce a general function-call
stack.

This results in more register usage.

This may significantly impact performance (e.g. reduce by a third).

Philip Blakely (LSC) CUDA features 33 / 41

Compiler options

Read CUDA Compiler Driver NVCC.pdf for compiler options

-O<n> - Optimize to level n. Typically use n = 3

-arch gpuarch Assume given GPU architecture:
compute 50, compute 52, compute 60
when optimizing

-code code Compile code for target GPU compute capability:
sm 50, sm 52, sm 52, sm 60, sm 70, sm 80

Philip Blakely (LSC) CUDA features 34 / 41

CUDA Libraries

As with all programming, the best approach is not to write any code!
NVIDIA ships some libraries as part of the CUDA Toolkit:

Thrust - replacement for C++ STL

NVIDIA C++ Standard Library libcu++

https://nvidia.github.io/libcudacxx/

CUBLAS - BLAS for CUDA

CUSPARSE - Sparse matrix calculations

CUSOLVER - Covers BLAS, Sparse, and Sparse refactorization

CUFFT - FFT calculations

CURAND - Random number generation

nvGRAPH - Graph creation and manipulation

Philip Blakely (LSC) CUDA features 35 / 41

https://nvidia.github.io/libcudacxx/

CUDA Libraries ctd

And some are available from NVIDIA’s GitHub repository:

GVDB-voxels - Sparse volume compute and rendering

AMGX - Multigrid (elliptic) linear solvers

NCCL - Inter-GPU communication algorithms

CUTLASS - matrix-multiplication via C++ templates

Kokkos - C++ abstractions for running CUDA code, e.g. array
classes etc.

... and various Deep Learning algorithms.

Philip Blakely (LSC) CUDA features 36 / 41

Thrust

http://docs.nvidia.com/cuda/thrust/index.html

C++ has STL for various algorithms on containers:

Sorting a list of strings

Summing over a list of integers

Various operations on stacks, heaps, maps.

Thrust creates versions of these that run on a GPU.

// Taken from Thrust examples
#include <thrust/count.h>
#include <thrust/device vector.h>
...
// put three 1s in a device vector
thrust::device vector<int> vec(5,0);
vec[1] = 1;
vec[3] = 1;
vec[4] = 1;

// count the 1s
int result = thrust::count(vec.begin(), vec.end(), 1);
// result == 3

Philip Blakely (LSC) CUDA features 37 / 41

http://docs.nvidia.com/cuda/thrust/index.html

cuBLAS

BLAS (Basic Linear Algebra Subprograms) is a library of
functions for operating on vectors and matrices.

Includes operations on symmetric, triangular, and Hermitian
matrices.

Well-defined standard and interface for FORTRAN, C, and C++.

First published in 1979, many implementations exist

cuBLAS implements some of these functions in a precompiled
CUDA library - available with <cublas.h> header and -lcublas

library.

If you only need vector/matrix operations - use this!

Philip Blakely (LSC) CUDA features 38 / 41

cuBLAS ctd

cuBLAS example

cublasAlloc(N, sizeof(float), (void **)&x);
cublasAlloc(N, sizeof(float), (void **)&y);

cublasSetVector(N, sizeof(float), xHost, 1, x, 1);
cublasSetVector(N, sizeof(float), yHost, 1, y, 1);

clock t start = clock();
float tot = 0;
for(int i=0 ; i < M ; i++)
{
tot += cublasSdot(N, x, 1, y, 1);

}

clock t end = clock();

Philip Blakely (LSC) CUDA features 39 / 41

cuFFT

Fast Fourier Transforms are a common application.

cuFFT implements these in CUDA - use cufft.h header and
-lcufft library.

Includes:

1D, 2D, 3D FFTs - real and complex data
In-place and out-of-place transforms
Double-precision on compatible hardware

Philip Blakely (LSC) CUDA features 40 / 41

Summary

More information is available from:

CUDA Best Practices Guide (similar material to but more depth
than this lecture)

Whitepapers in the CUDA SDK (usually well written)

Research articles on CUDA (may contain useful code snippets)

Source code for CUDA applications often made freely available by
authors (harder to read).

Philip Blakely (LSC) CUDA features 41 / 41

	Should we optimize
	Memory layout
	Streaming Multiprocessor usage
	Code optimizations
	Which optimizations
	Larger CUDA programs

