
Parallel CUDA

Philip Blakely

Laboratory for Scientific Computing, Cambridge

Philip Blakely (LSC) MPI and more 1 / 17



Outline

1 CUDA and MPI

2 Further CUDA features

Philip Blakely (LSC) MPI and more 2 / 17



MPI with GPUs

This course does not cover MPI itself.

For more information see the MPI lecture course.

We don’t cover OpenMP or multi-threaded code; I strongly
suggest that you don’t mix CUDA with either of these.

General rule for MPI/CUDA: Need one CPU process per GPU.

Philip Blakely (LSC) MPI and more 3 / 17



MPI-GPU compatibility

Attach one GPU to each process

Use of a GPU is completely orthogonal to use of MPI

General approach: Proceed as for a typical MPI application, using
GPUs to speed up computation on each processor

Can take an already parallelised code and use CUDA to accelerate
compute-intensive parts

No extra thought is needed to ensure parallel correctness between
CPU-cores.

But some may be required for optimal performance.

Philip Blakely (LSC) MPI and more 4 / 17



Issues to be aware of

Is it worth it?

Developing a robust parallel code can be tricky
May be better to put more effort into GPU optimization
Unless the issue is amount of memory
How fast is fast enough?

Speed-up may be less good than for CPU version (see Amdahl’s
law)

since by using GPUs, we’ve reduced the proportion (in time) of
the code that can be parallelised

However, can probably get reasonable speed-ups on small clusters

Philip Blakely (LSC) MPI and more 5 / 17



Device choice

The number of CUDA cards can be found from
cudaGetDeviceCount(int*)

You may often have multiple CUDA cards in a computer and want
to choose the one with highest Compute Capability, memory, etc.

The function cudaGetDeviceProperties can be used to ascertain
all these properties.

The information is returned in a struct (details in Reference
Guide)

You can then select which card to attach the current process to
cudaSetDevice(N) to force all subsequent kernels to launch on
this card.

Philip Blakely (LSC) MPI and more 6 / 17



Attaching a GPU to a CPU thread

We only describe the run-time API here.

The driver API does permit more than one GPU per thread (but
not simultaneously)

Initializing GPUs with MPI

int numCPUs;
MPI Comm size(MPI COMM WORLD, &numCPUs);
int numGPUs;
cudaGetDeviceCount(&numGPUs);

int myCPU;
MPI Comm rank(MPI COMM WORLD, &myCPU);
cudaSetDevice(myCPU);

Philip Blakely (LSC) MPI and more 7 / 17



Multiple hosts

For multiple nodes, you will need to make use of

char myName[100];
int length;
MPI Get processor name(myName, &length)

to distinguish between the CUDA devices on different nodes.

Mapping directly from MPI rank is unlikely to work robustly,
since ranks are not assigned with regard to host.

You will need to determine the set of MPI processes on each node,
and the number of CUDA devices on that node

Then, determine which CUDA device each process will attach to.

Philip Blakely (LSC) MPI and more 8 / 17



Communication

Most communication is done via host CPUs

As with traditional MPI, make sure buffers contain correct data
before use

More important now, when combined with asynchronous GPU
functions

Check MPI and CUDA documentation regarding buffered sends,
asynchronous memory copies, etc. very very very carefully

Just because you have initiated a memory-copy does not mean it
has completed.

It is possible for separate devices on one system to read each
other’s memory

See cudaDeviceEnablePeerAccess and cudaMemcpyPeer and
similar for details

For safety, start off doing copies via host memory and only use
peer-to-peer copy for optimization reasons.

Philip Blakely (LSC) MPI and more 9 / 17



Communication optimization

Use MPI buffered sends and GPU memory copy at same time as
computation on GPU

In theory, this should hide communication latency

Some HPC manufacturers have setups to increase
bandwidth/reduce latency for node interconnect. On cheaper
systems, you may find GPU-GPU transfers still go via CPU
data-path.

Philip Blakely (LSC) MPI and more 10 / 17



Pinned memory

You can allocate pinned memory (also known as page-locked
memory)

Copies between device and pinned memory may overlap with
computation

Page-locked memory can be mapped into device memory

Copying between host-page-locked and device may be faster than
regular copying

Use cudaMallocHost() to allocate pinned memory

or cudaHostAlloc() to give memory extra properties

such as allocating mapped memory - immediately accessible from
device using cudaHostGetDevicePointer()

Philip Blakely (LSC) MPI and more 11 / 17



Compiling MPI-CUDA applications

Best approach: Put MPI commands into separate files/classes
from CUDA constructs.

This will help keep the MPI and CUDA functionalities separate in
your mind.

Compiling:

Use mpic++ -show to get the set of compiler options to pass to use
MPI headers and libraries:

g++ −I/usr/lib/openmpi/include
−I/usr/lib/openmpi/include/openmpi

−pthread −L/usr/lib
−L/usr/lib/openmpi/lib −lmpi cxx −lmpi −ldl −lhwloc

Append these options to all nvcc commands.

Ensure that MPI implementation uses same gcc compiler as nvcc;
problems may occur if compilers are mixed.

Philip Blakely (LSC) MPI and more 12 / 17



Linking and running MPI-CUDA

Linking: “Including pre-compiled libraries”
nvcc -dlink -lcublas driver.o mpiRoutines.o cudaKernels.o

-o myExecutable

Use nvcc to link

MPI: Need libmpi and maybe libmpi cxx

Add -L/usr/lib/openmpi/lib -lmpi -lmpi cxx

Paths and library names may vary depending on your setup.

For profiling, NVIDIA Nsight Systems will give details of all GPUs,
and cost of memory copies, etc.

Philip Blakely (LSC) MPI and more 13 / 17



Outline

1 CUDA and MPI

2 Further CUDA features

Philip Blakely (LSC) MPI and more 14 / 17



Dynamic parallelism

So far we have assumed that kernels can only be launched from
the host

However, this is not necessary; kernels can be launched from inside
other kernels

Launching is still asynchronous, so that a device thread needs to
call cudaDeviceSynchronize() in order to ensure that all child
kernels have completed

More details are available in
CUDA Dynamic Parallelism Programming Guide.pdf

Philip Blakely (LSC) MPI and more 15 / 17



Concurrent kernels (streams)

Some applications launch fewer thread-blocks than GPU can hold

So, in order to improve performance, you can launch multiple
independent kernels at the same time

May improve performance for some applications

Use “streams” feature of run-time API:

myKernel<<< gridDim, blockDim, sharedMem, stream >>>();

In practice, careful reading of manuals is necessary to ensure no
accidental inter-dependency between kernels and memory copies,
causing streams to wait for each other.

Nsight Systems separates streams and allows you to see
dependencies.

Philip Blakely (LSC) MPI and more 16 / 17



CUDA research

CUDA/GPUs are being used in groundbreaking research worldwide

Google Scholar Search: allintitle:CUDA - 8,520 hits

(and even more papers actually use CUDA or GPU acceleration).

GPU Technology Conference www.gputechconf.com

UK ManyCore Network www.manycore.org.uk

Many HPCs have NVIDIA hardware installed (e.g. CSD3)

Philip Blakely (LSC) MPI and more 17 / 17

www.gputechconf.com
www.manycore.org.uk

	CUDA and MPI
	Further CUDA features

