
Part III

Bash scripts

Philip Blakely (LSC) Introduction to Linux 47 / 182

Shells

A shell is the program that interprets what you type at the
command-line.

There are many shells.

The most common (default) is the Bourne-Again Shell (bash).

Others include ksh, csh, tcsh.

These can look deceptively similar, but have subtle differences.

I shall focus on bash.

Bash includes a complete programming language, with loops,
if-else statements, functions, etc.

For far more detail than you will ever need, see
http://www.tldp.org/LDP/abs/html/

Philip Blakely (LSC) Introduction to Linux 48 / 182

http://www.tldp.org/LDP/abs/html/

Shell script

Instead of manually repeating a set of instructions at the
command-line, you can put the commands into a single file
compile:

#!/bin/bash
gcc −c main.c −o main.o
gcc −c ODE.c −o ODE.o
gcc main.o ODE.o −lm −o ODEsolver

Once this is defined to be executable with chmod u+x ./compile

you can run the command ./compile which will run these
commands.

The first line indicates the interpreter for the file.

You can equally use another shell or even /usr/bin/python or
similar.

Philip Blakely (LSC) Introduction to Linux 49 / 182

Environment variables

There are many special environment variables.

To see a full list as defined in your shell, type export.

To set an existing or new environment variable for use in the
whole shell, use

export MYNAME=pmb39

This is then defined for the remainder of the shell session.

To set a variable for the remainder of a script only, use

allFiles="file1.txt file2.txt"

To access a variable’s value, use $MYNAME:

$ echo "My name is $MYNAME"

My name is pmb39

$

This is called variable expansion.

Philip Blakely (LSC) Introduction to Linux 50 / 182

Special environment variables - PATH

PATH is the set of directories that are searched for executables:

PATH=/bin:/usr/bin:.

If a command is not found in any of these directories:

$ castep.mpi

castep.mpi: command not found

so you would need to give its full path:
/lsc/opt/castep-18.1/castep.mpi or put the path into PATH:

export PATH=/lsc/opt/castep-18.1:$PATH

The directories are searched in order from the beginning, and the
first one to contain the required executable is used.

echo $PATH

/lsc/opt/bin:/usr/local/cuda/bin:/usr/local/sbin:

/usr/local/bin:/usr/bin:/bin

Philip Blakely (LSC) Introduction to Linux 51 / 182

Making use of PATH

It can be useful to create a directory ~/bin and add this to your
PATH:
export PATH=~/bin:$PATH

Then, you can make various useful scripts available everywhere.

Note the existence of the which command:
$ which g++

/usr/bin/g++

$ which spellCheck

/home/pmb39/bin/spellCheck

You can add extra lines into the file ~/.bashrc to automatically
add this directory for every new shell/terminal you start.

Philip Blakely (LSC) Introduction to Linux 52 / 182

Special environment variables

SHELL - the current shell e.g. /bin/bash

HOSTNAME - the current computer name e.g. cdt-laptop-01

PWD - the current working directory

OLDPWD - the previous working directory - use cd - to go there.

HOME - your home directory on this computer - use cd to go there

Philip Blakely (LSC) Introduction to Linux 53 / 182

Regular Expressions

We may wish to operate on a set of files whose names conform to a
particular format:

ls *.C will list all files ending in “.C”

ls *[0-9].txt will list all files ending in a digit followed by .txt

ls Water*[02468].txt will list all files starting with Water and
ending with an even digit followed by .txt.

Strictly, Bash uses the POSIX Extended Regular Expression
(ERE) dialect of regular expressions.

Philip Blakely (LSC) Introduction to Linux 54 / 182

Basic quoting and escaping

To preserve the literal meaning of characters, enclose them in “ ”

So ls "*.C" will list all files called, literally, *.C, of which there
will probably be none.

ls "My Documents" will list the directory called My Documents.

ls My Documents will try to list the files/directories called My and
Documents.

Or, ls My\ Documents will list the directory My Documents

The backslash “escapes” the following space, i.e. interprets it as an
ordinary character, rather than as a word separator.

(You are strongly advised to avoid having spaces in directory
names, to avoid problems in scripts and commands that fail to
deal with them correctly.)

Philip Blakely (LSC) Introduction to Linux 55 / 182

Command substitution

If you want the result of one command to be used later on, you
can use command substitution:

files=‘find −name "*.pdf"‘

The backticks ‘ ‘ can contain piped or other commands:

words=‘detex Thesis.tex | spell | sort | uniq‘

Philip Blakely (LSC) Introduction to Linux 56 / 182

Exit codes

All Linux programs return an integer between 0 and 255.

C/C++ programmers will recognise this from int main(void)

Usually, 0 indicates the program exited correctly with no errors.

Other exit codes depend on the application, and should be listed
in the man page.

For example, for grep:

EXIT STATUS
The exit status is 0 if selected lines are found,
and 1 if not found.
If an error occurred the exit status is 2.

Philip Blakely (LSC) Introduction to Linux 57 / 182

Special variables

There are variables whose value changes depending on the current shell
script, etc.

Variable Description Example

$? Exit code of last process run 0

$#
Number of command-line ar-
guments passed to a script

2

$*
All command-line parameters,
as a single word

myFile.txt myFile2.txt

$@
As $* but with words sepa-
rately quoted

myFile.txt myFile2.txt

$0, $1,
$2 etc.

Successive command-line pa-
rameters passed to script,
starting with command-name

ls, ./

Philip Blakely (LSC) Introduction to Linux 58 / 182

Conditional statements

In bash, the test command is capable of comparing strings,
integers, and testing whether files exist.

For example:

if test $? -ne 0; then

echo "Error"

exit 1

fi

will only print “Error” (and exit the script) if the previous
command exited with exit code not equal to zero.

Other options include:

if test −f output.txt; then
echo "output.txt exists. Will not overwrite."
exit 1

fi

See man test for more details.

Philip Blakely (LSC) Introduction to Linux 59 / 182

Logical operations

test can deal with AND (-a) and OR (-o).

So can the shell, with && and ||

These employ short-circuiting, i.e. work from left to right and stop
as soon as the result is known.

Here 0 is true (success), and anything else is false (error).

mkdir Pictures && mv *.png ./Pictures

will only move files if the directory has been successfully made.

If there had already been a file called Pictures, we might
otherwise have overwritten it.

Philip Blakely (LSC) Introduction to Linux 60 / 182

For Looping

There are two main forms of for loop in bash:

for f in $myFiles; do cp $f $f.bak; done

would copy all files given in the myFiles variable to backup
versions of same.

for ((i=0 ; i < 10 ; i++)); do

mv "Data$i.txt" ./FirstPass/

done

would move 10 files into the directory FirstPass.

You can write everything on one line with ;s or on multiple lines,
either in a script or at the command line.

Braces may be needed around the variable being expanded:

mv "Data_$i_coarse.txt" ./FirstPass/

mv "Data_${i}_coarse.txt" ./FirstPass/

In the first version the shell would attempt to expand the variable
i coarse, resulting in Data .txt

Philip Blakely (LSC) Introduction to Linux 61 / 182

While looping

There is also the do-while loop:

while true; do
echo "Hello"

done

would print “Hello” for ever.

Use break to exit a loop early.

Use continue to go immediately to the next iteration of a loop.

Philip Blakely (LSC) Introduction to Linux 62 / 182

Reading user input

You may want user input during a shell script.

read a b will read two words from the user into variables a and b

Then to read repeatedly from stdin:

while true; do
read a b | | break
echo "Received pair of inputs ${a} and ${b}"

done

If read fails (i.e. no input left), then it will return exit-code 1,
corresponding to failure/false, therefore break will be evaluated,
so that execution of the loop stops.

Philip Blakely (LSC) Introduction to Linux 63 / 182

sed

Basic text-substitution on one or more text-files is sometimes
necessary.

If you have mis-capitalized an acronym, for example:

sed ’s/Muscl/MUSCL/’ Thesis.tex > Thesis new.tex

This will replace (almost) all occurences of “Muscl” with
“MUSCL” throughout Thesis.tex and put the result into
Thesis new.tex

This actually only replaces the first instance of “Muscl” on each
line.

To replace all occurences:

sed ’s/Muscl/MUSCL/g’ Thesis.tex > Thesis new.tex

where the extra ‘g’ stands for ‘global’.

Philip Blakely (LSC) Introduction to Linux 64 / 182

sed in-place

If you are certain that your sed script is working properly, you can
modify the files as they are processed:

sed −i ’s/Muscl/MUSCL/g’ Thesis.tex

This means you can also do:

for f in Chapter*.tex; do
sed −i ’s/Muscl/MUSCL/g’ $f;

done

to replace all occurences throughout all chapters in your thesis.

You will need to take care if you refer to “Muscles” anywhere in
your thesis...

Philip Blakely (LSC) Introduction to Linux 65 / 182

Escaping characters

You may need to modify a script which contains paths:

sed ’s/\/home\/pmb39\//\/home\/raid\/pmb39\//g’
myScript.sh

which replaces /home/pmb39/ with /home/raid/pmb39/

The / character needs to be escaped as otherwise it would be
interpreted as the delimiter between separate parts of the
replacement command.

Other characters which need to be escaped are:

$. [] ^ ? +

Another way of writing the above is:

sed ’s%/home/pmb39/%/home/raid/pmb39/%g’ myScript.sh

where the % character is now the delimiter as it is the first
character after the ’s’.

Philip Blakely (LSC) Introduction to Linux 66 / 182

Matching certain lines

What if you only want to replace Muscl with MUSCL in a list:

1) Use the Muscl method (see Toro for details of Muscl)

2) Another line

3) A line with Muscl

Reference to Muscl.

Here we can force sed only to make the replacement if the line
starts with a number:

sed ’/ˆ[0−9]*)/s/Muscl/MUSCL/g’ Thesis.tex

The regular expression ^[0-9]*) matches the list indicators.

The result will be:

1) Use the MUSCL method (see Toro for details of MUSCL)

2) Another line

3) A line with MUSCL

Reference to Muscl.

Philip Blakely (LSC) Introduction to Linux 67 / 182

More regular expressions

Regular expressions in sed are used for pattern-matching text.

Examples are:

. match any character
* match any number (including zero) of the preceding character
[0-9] match any digit
^ match the beginning of a line
$ match the end of a line

These are not exactly the same as what your bash command-line
will recognize.

sed supports POSIX.2 Basic Regular Expressions (BRE)

Philip Blakely (LSC) Introduction to Linux 68 / 182

Extended examples

The regular expression:
wh*it*ch

will match all of
which witch whitch wich

The regular expression:
wh*it.

will match all of
white wits with but not which or wit
although ‘wit ’ would be matched as the ‘.’ matches the space.

To avoid matching ‘wit ’:
wh*it[^]

where [^] means to match everything except a ‘ ’

Philip Blakely (LSC) Introduction to Linux 69 / 182

sed, awk, etc.

More details of sed are available at
http://www.gnu.org/software/sed/manual/

An easier to read and more powerful alternative to sed is awk.

Regular expressions are covered in detail at
http://www.zytrax.com/tech/web/regex.htm

Knowing about regular expressions can speed things up at the
command-line as well as in text-replacement.

Text-editors (such as emacs and vi) can also deal with
regular-expression search/replace.

Philip Blakely (LSC) Introduction to Linux 70 / 182

http://www.gnu.org/software/sed/manual/
http://www.zytrax.com/tech/web/regex.htm

Extended #!

Earlier, you may have wondered about the #!/bin/bash at the
start of a bash-script.

The #! (hash-bang) are special characters indicating that the next
thing on the line is a separate executable that will be used to
parse the file.

This could be any parser, such as:

#! /usr/bin/sed −f
#! /usr/bin/python
...

Note the -f for sed because what actually happens is that the
filename is appended to the #! line, and sed requires the -f flag
in this case.

(If you start writing sed scripts into a file, stop and reconsider.)

Philip Blakely (LSC) Introduction to Linux 71 / 182

