
Part IV

Compiling, Linking, and Makefiles

Philip Blakely (LSC) Introduction to Linux 72 / 182

Compilation

You (usually) write your code in human-readable form

Compilation turns this into machine-executable code

There are various steps taken by the compiler to do this.

Here I cover only C(++) and Fortran as done by gcc.

Other compilers should have very similar options.

Philip Blakely (LSC) Introduction to Linux 73 / 182

Basic compilation instructions

The most simple example:

gcc myProgram.C −o myProgram

compiles a single file myProgram.C into an executable myProgram.

gcc detects, based on file-extension (.C here) the language it
should assume (C++ here).

Alternatives are: .f, .f90, .F, .c, .cxx, .cpp, and more to
compile C, C++, Fortran, etc.

You can force gcc to assume a particular language when compiling,
ignoring the file extension, but it’s best to stick with convention.

Philip Blakely (LSC) Introduction to Linux 74 / 182

Single file compilation

The compiler goes through many stages in compiling even a single
file:

Preprocessor - processes #include, #define, etc. to generate a
single file (C/C++ only)

Parser - turns code into an internal representation of the program

Optimizer - Analyzes the parsed code and identifies and applies
possible optimizations

Compilation - Turns the parsed code into assembly language

Assembly - Turns the assembly language into executable machine
code

Philip Blakely (LSC) Introduction to Linux 75 / 182

Examining different phases

Preprocessor: Passing -E will emit preprocessed source-code

Parser: Output not available. This representation is for compiler
developers only.

Optimizer: Try the option -fopt-info-all to see a detailed
optimization report

Compilation - Passing -S will emit assembly language

Assembly - Default is to output compiled machine-code (use -c)

Philip Blakely (LSC) Introduction to Linux 76 / 182

Linking

If you have inter-dependent functions in separate files (for
readability) then we need an extra stage.

For each source file, pass -c to the compiler to generate an object
file .o.

For example:

gcc −c myFile.C −o myFile.o
gcc −c myFile2.C −o myFile2.o

This creates two separate files myFile.o and myFile2.o which are
not complete programs and cannot be executed.

Philip Blakely (LSC) Introduction to Linux 77 / 182

Linking continued

To make an executable, we must link multiple object files together:

gcc myFile.o myFile2.o −o myExecutable

This analyzes the object files listed, determines which functions
are defined in each of them, and which functions are called by each
of them.

Any references from one object file to another object file’s
function(s) are replaced with appropriate machine code calls.

If any references are not found, the linker will crash with
Undefined reference and should tell you which file called the
function whose definition was not found.

If this happens, you need to include the file in which the function
is defined in the linking command.

Philip Blakely (LSC) Introduction to Linux 78 / 182

Libraries

As well as your own functions, you may wish to call functions from
other libraries (LAPACK, BLAS, etc.)

For these, shared-object files are usually present on the computer.

Look in /usr/lib/x86 64-linux-gnu/ for many examples,
e.g. /usr/lib/x86 64-linux-gnu/libblas.so

On my system (Ubuntu 20.04), this is eventually symlinked to
/usr/lib/x86 64-linux-gnu/openblas-pthread/libblas.so.3

To link to this library, add the option -lblas when linking.

Other Linux OS will have libraries in different places.

E.g. CSD3 has /usr/lib64/libblas.so.3.8.0.

Philip Blakely (LSC) Introduction to Linux 79 / 182

Libraries continued

The linker will look for libblas.so in all available library
directories, mainly /usr/lib, and any others you specify.

For the full list, run gcc -print-search-dirs

If you have multiple versions of a library installed, or if they are
installed in non-standard places, you need to tell the linker where
to find the library.

Pass -L/opt/path/to/blas/lib where this defines where the file
libblas.so can be found.

In summary:

gcc myFile.o −L /opt/blas−intel/lib −lblas −o myProgram

will link to the version of BLAS in /opt/blas-intel/lib.

Philip Blakely (LSC) Introduction to Linux 80 / 182

Run-time libraries

Even though you have specified at linking where the library is, you
must still specify its location at run-time.

Linux will look in all directories in the LD LIBRARY PATH

environment variable for the correct libraries.

If a library is not found, Linux will give:
EulerSolver 1D: error while loading shared libraries:

libblas.so: cannot open shared object file: No such

file or directory

Usually, you set up your LD LIBRARY PATH in your ~/.bashrc file
using appropriate export

LD LIBRARY PATH=/opt/blas-intel/lib:$LD LIBRARY PATH

commands

The ~/.bashrc file is executed whenever a terminal is opened (or
ssh session started).

Philip Blakely (LSC) Introduction to Linux 81 / 182

Optimization

The compiler can usually make very good attempts at optimizing
your code, but it is not a mind reader.

It is best to make your code as simple as possible, so that the
compiler can find the optimizations it can make.

Pass -O<n> where n = 0, 1, 2, 3 for different levels of optimization.

Further optimization options are available, see
http://gcc.gnu.org for details.

Philip Blakely (LSC) Introduction to Linux 82 / 182

Machine specific optimization

Much of the improvement in processors in the past 20 years has
been due to extra instruction types.

For example, if appropriate, a compiler can generate instructions
to operate on 4 floats at once (SSE instructions).

If you know that your code will only be running on processors
with these instructions, you can pass -msse, -msse3, -mavx, etc.
options to allow the compiler to generate these instructions.

This means that your code will only run on processors with these
instructions, though (watch out for SIGILL).

This may or may not produce significant speed-up, depending on
your code.

Some codes cannot easily be vectorized and so may not benefit
from these instructions.

Philip Blakely (LSC) Introduction to Linux 83 / 182

Optimization techniques

Over the years, many heuristic optimization techniques have been
developed.

These will usually help performance, although some may hinder it.

Not all optimizations may apply to your problem; the compiler
tries to determine which are appropriate.

Philip Blakely (LSC) Introduction to Linux 84 / 182

Inlining

When calling a function, code must be generated to store the
current function location on the stack, allocate space for local
variables, and move the execution point to the new function.

If the function is called often enough, and is very simple, this
generates a lot of overhead.

The compiler can copy the function contents to the place from
which it is called, and avoid the overhead.

Downside: this may increase the program size slightly.

In general, this can only be done if the function calling and the
function called are in the same source-file (or one is in a header
file)

Compilers (gcc, Intel) do now have inter-procedural-optimization
(IPO) to inline functions between separate object files, but this
can be very expensive at link-time.

Philip Blakely (LSC) Introduction to Linux 85 / 182

Constant propagation

If an expression is reused within many calculations, the compiler
may be able to compute it once and use the result multiple times.

This can be applied to integer expressions easily, but usually not
to floating point ones.

Integer expressions may enter into loop-ranges, array
offsets/indexes, etc. and may lead to other optimizations being
possible.

For floating-point, it’s usually better to do this by hand:

const double sin2X = sin(x) * sin(x);
const double result = 10 + 3*sin2X + 8*sin2X*sin2X;

The example above could probably not be done by the compiler
since sin must set the global errno flag if x is infinity.

Philip Blakely (LSC) Introduction to Linux 86 / 182

More constant propagation

Constant propagation is more important for memory offsets:

const int a = 10;
double b[100];
for(int i=0 ; i < 10 ; i++){

b[i*a] = i;
}

Here the compiler knows the value of a and could therefore
pre-compute i*a and determine memory offsets at compile-time.

(Whether it does so depends on the compiler itself.)

Philip Blakely (LSC) Introduction to Linux 87 / 182

Loop unrolling

The loop

for(int i=0 ; i < 5 ; i++){
a[i] = 2*b[i];

}

has its number of iterations known at compile-time.

The compiler can avoid creating and testing i by turning the loop
body into 5 separate instructions.

The compiler may then be able to do further optimizations on the
remaining instructions.

Philip Blakely (LSC) Introduction to Linux 88 / 182

Partial loop unrolling

Even for loops where the number of iterations is unknown, the
compiler may be able to do partial unrolling:

for(int i=0 ; i < N ; i++){
a[i] = 2*b[i];

}

becomes

for(int i=0 ; i < N ; i+=4){
a[i] = 2*b[i];
a[i+1] = 2*b[i+1];
a[i+2] = 2*b[i+2];
a[i+3] = 2*b[i+3];

}

(with allowances for N not being divisible by 4).

This reduces the number of increment-and-test instructions for i.

Philip Blakely (LSC) Introduction to Linux 89 / 182

Vectorizing

If there are no data dependencies between separate loop iterations,
then the compiler may be able to use vectorized instructions:

float a[4], b[4], c[4];
for(int i=0 ; i < 4 ; i++){
a[i] = b[i] + c[i];

}

This can be done using a single SSE instruction:
addps Add Packed Scalar.

Philip Blakely (LSC) Introduction to Linux 90 / 182

How to confuse a compiler

Compilers can be confused by non-simple constructs:

bool doneOneIter=false;
for(int i=0 ; !doneOneIter | | i != 0 ; i=(i+7) % 20){

a[i] = 2*b[i];
doneOneIter = true;

}

is equivalent to the same loop from 0 to 19 (inclusive) but the
compiler can’t tell that (probably).

Philip Blakely (LSC) Introduction to Linux 91 / 182

Aliasing

Specific to C/C++ is the issue of aliasing:

void f(int *a, int *b, int *c){
for(int i=0 ; i < 4 ; i++){
a[i] = b[i] + c[i];

}
}

This cannot (probably) be optimized into an SSE instruction by
the compiler because it does not know whether a, b, and c are
distinct arrays.

We could have called the function as

f(&a[0], &a[2], &a[3]);

which is valid C, but means that the loop iterations are no longer
independent, and vectorizing it would be incorrect.

Philip Blakely (LSC) Introduction to Linux 92 / 182

Strength reduction

One technique that a compiler cannot usually apply is that of
strength reduction.

This means replacing one arithmetic expression by a
mathematically equivalent, but less expensive, one.

For example:

a = pow(x, 2) − 1 == x*x − 1 == (x+1)*(x−1)

The compiler cannot do this itself because the result may be
numerically different (finite precision).

You may need to worry about floating-point accuracy.

The compiler can do some strength reduction:

a = c / 4;
a = c >> 2; // right−shift by 2 bits

are equivalent for integers, and the second may be less expensive.

Philip Blakely (LSC) Introduction to Linux 93 / 182

Cross-compilation

It is possible to compile code on one machine architecture for a
completely different one.

For example, to compile 32-bit code on a 64-bit machine, or AMD
code on an Intel machine

Or, if you really want, to compile a Windows-compatible
executable on a Linux machine.

This is for specialists only. If you really need it, consult the gcc

manual.

Philip Blakely (LSC) Introduction to Linux 94 / 182

Makefiles

You will have noticed that compiling and linking large programs takes
many lines of shell script:

gcc −c main.c −o main.o
gcc −c ODEs.c −o ODE.o
gcc −c output.c −o output.o
gcc main.o ODE.o output.o −o ODEsolver −lm

You could put all these into a shell-script that you run every time you
change a single file.
But, wouldn’t it be nice if you could only recompile the files that
needed it?

Philip Blakely (LSC) Introduction to Linux 95 / 182

Make

The make utility was invented in the 1970s as part of Unix.

The most widely used implementation of this is GNUmake which is
available on most Linux systems.

It is capable of scheduling the commands required to generate a
file, based on its declared dependencies, and whether these have
changed more recently than the file.

It uses a text-based Makefile, which lays out the rules for which
files have which dependencies, and what commands need to be
executed.

Philip Blakely (LSC) Introduction to Linux 96 / 182

Makefile

When make is executed, it looks for files in the current directory
called makefile, Makefile, or GNUMakefile.

If one of these is found, it is processed by make.

A typical usage might be:

make clean
make euler 2D

Philip Blakely (LSC) Introduction to Linux 97 / 182

Rules

A rule in make takes the form

target1 target2 : dependency1 dependency2
command1
command2

Note that each commandn line begins with a TAB. This is important,
and a common source of errors as spaces look like a TAB in many
editors.
If spaces are used in place of a TAB, either instructions will not be
carried out as you expect, or you may get the message

Makefile:3: *** missing separator (did you mean TAB instead of
8 spaces?). Stop.

which is at least reasonably helpful.

Philip Blakely (LSC) Introduction to Linux 98 / 182

Rule example

An example of a rule to make an object file would be:

euler 2D.o : euler 2D.c euler 2D.h
gcc −c euler 2D.c −o euler 2D.o −O3

which will trigger if either euler 2D.c or euler 2D.h is changed.
A rule to make an executable would be

euler 2D : euler 2D.o
gcc euler 2D.o −o euler 2D −lm −lhdf

So, if you change either of the source-files, and run make euler 2D,
then the executable will be recompiled.

Philip Blakely (LSC) Introduction to Linux 99 / 182

Automatic variables

In the context of a rule, some variables are automatically defined:

$@ - The filename of the target

$< - The filename of the first prerequisite

$ˆ- The filenames of all prerequisites

$? - The filenames of all prerequisites newer than the target

$* - The stem of the target filename

euler 2D.o : euler 2D.c euler 2D.h
gcc −c $< −o $@ −O3

is equivalent to the first rule on the previous slide.

Philip Blakely (LSC) Introduction to Linux 100 / 182

General rules

For a project with many files to compile, specifying each file’s rule
separately would become tedious and error-prone.
Instead we could use

%.o : %.c
gcc −c $< −o $@ −O3

which will make all object files depend on their corresponding source
file and compile accordingly.
Extra effort is required to make object files depend on all their correct
header files.
The rule to make the final executable:

euler 2D : euler 2D.o RK2.o settings.o output.o
gcc $ˆ −lm −o $@

and if these were the only two rules, Make would compile and link
euler 2D correctly.

Philip Blakely (LSC) Introduction to Linux 101 / 182

Variables

Within Makefiles, variables can be set and read:

CXX=g++

CXXFLAGS=-O3 -Wall -Wextra -g

%.o : %.c

$(CXX) -c $< -o $@ $(CXXFLAGS)

CXXLIBS=-lm

euler_2D : euler_2D.o RK2.o settings.o output.o

gcc $^ $(CXXLIBS) -o $@

Any variable names could be used, but these are standard ones.

Philip Blakely (LSC) Introduction to Linux 102 / 182

Silent commands

You often want to only output the actual command-output, not
the command itself.

For example, if you have turned on all compiler warnings, you
want to see only those (or preferably their absence!), and not the
long list of compiler options.

To do this, prefix a command by @:

%.o: %.C

@echo "Compiling $<"

@$(CXX) $(CFLAGS) $(CPPFLAGS) $(CXXFLAGS)\

$(CXXINCLUDES) -c $< -o $@

would only output “Compiling Output.C” if there were no
compiler errors or warnings.

The \ is a line continuation character.

Philip Blakely (LSC) Introduction to Linux 103 / 182

Parallel make

Since multiple files can be compiled at once, we may wish to use
our multi-core processor.

make -j<n> will launch at most n command rules at once.

If command rules can be executed independently (according to the
dependency-graph), then they will be.

Try using n to be the same as the number of CPU-cores.

Actual speed-up may depend on input/output performance of your
disk/file-system, which may now be the bottle-neck.

Philip Blakely (LSC) Introduction to Linux 104 / 182

More information

Make has substantially more features than I have described here.

It permits macros, loops, and functions, and is Turing complete.

For full documentation, go to
http://www.gnu.org/software/make/manual/

Philip Blakely (LSC) Introduction to Linux 105 / 182

http://www.gnu.org/software/make/manual/

