
Part V

Version Control

Philip Blakely (LSC) Introduction to Linux 106 / 182

Why version control?

When writing software, you may imagine it in terms of continual
improvement.

More likely, you will usually be making improvements, but you
may want to experiment with new features, completely refactor
your code, or similar.

Or, you may manage to introduce a bug, and fail to notice it for a
few weeks...

In all of these cases, it would be helpful to roll-back your code (or
parts of it) to an earlier version.

One way to do this would be to save a copy of your program every
day with a date-related filename. This way lies
EulerSolver WORKING 1D 050422 b and worse.

Philip Blakely (LSC) Introduction to Linux 107 / 182

What version control provides

Version control generally allows you to save changes made to
particular files with an associated message.

You can interrogate the system to extract an old version of the
code into a separate directory.

You can roll-back just the changes to one file without touching
others.

You can share your code with other people and ensure that you all
know what your different code versions are based on.

Philip Blakely (LSC) Introduction to Linux 108 / 182

Version control models

There are two main models for version-control:
Client-server model:

The repository is (usually) stored an a remote server.

All users have appropriate access to this server to extract code or
to commit their changes.

This is suited to a company model, where there is an official
version of the project, centrally stored.

Commits, and some history queries will require network access to
this server.

In some cases, the client-machine can double-up as the server.

Philip Blakely (LSC) Introduction to Linux 109 / 182

Distributed model

Distributed model:

The entire repository is stored on each user’s client.

If developers need to share the repository, they can either set up a
central server with an official repository version, or give other
developers read-access to their repository, so that they can pull
changes from that repository.

Some systems with this model (e.g. git) allow multiple repositories
for one project, so you can have a local repository for your
personal changes, and a centralized one for collaboration.

Philip Blakely (LSC) Introduction to Linux 110 / 182

Version control systems

The most popular ones in use at the moment are git and
Subversion

Other options are available, such as CVS and Mercurial, as well as
other less-used open-source options, and some proprietary ones.

Subversion was developed in the early 2000s by CollabNet, a
company started by Tim O’Reilly (of O’Reilly books)

git was developed by Linus Torvalds to aid development of the
Linux kernel around 2005.

Philip Blakely (LSC) Introduction to Linux 111 / 182

Which one should I use?

If you are working on an existing project, then the decision will
have been made for you already.

If this is a major project (commercial or academic) that does not
use version control, back away slowly...

If you are instigating a project that will require collaboration
between many people, then Subversion may be the better option.

If you are working on your own personal project, git is probably
the answer.

Philip Blakely (LSC) Introduction to Linux 112 / 182

Git

Getting started:

Either you will be working on an existing repository, in which case:

git clone https://mycode.me/git/trunk/MainCode

or you will need to create your own repository:

git init /home/pmb39/WorkingCode

Note that here the repository only exists once in your home
directory. There is no central storage of the data.

All repository history is stored in special .git directories.

You should ensure that the files are all backed up.

In order to update to the latest version of the code from the
repository, use:

git pull

Philip Blakely (LSC) Introduction to Linux 113 / 182

Basic usage

You need to indicate that certain files are to be added to your
repository:

git add ./Driver.C ./IdealGas.C ./IdealGas.H settingsFiles/

At this point, the files are not committed to the repository, just
marked as being files to be eventually put into the repository.

Addition of directories will happen recursively, and may add more
than you intended.

To add only files that are aleady tracked by git, use:

git add −u settingsFiles/

Philip Blakely (LSC) Introduction to Linux 114 / 182

Deleting files

If you need to delete files from your code, then:

git rm ./IdealGas.C

You may wish to keep the file locally on your file-system, but only
delete it from the head of the repository:

git rm −−cached ./IdealGas.C

Remember that if a file has been committed to the repository then
it remains there in perpetuity in earlier revisions, and you can
access it by checking-out the appropriate revision.

Philip Blakely (LSC) Introduction to Linux 115 / 182

Initial commit

In order to commit the newly added files to the repository:

git commit

Any additions/changes to your files will be transferred to the
repository, and the revision no. of your checked-out version will be
advanced.

Philip Blakely (LSC) Introduction to Linux 116 / 182

Other operations

Other operations are possible:
git mv IdealGas.C StiffenedGas.C

will move one file to the new place, and take account of the file’s
history.

If you do:
cp IdealGas.C StiffenedGas.C

git add StiffenedGas.C

then git will (very cleverly) work out that the second file shares
history with the first.

Having this link can be useful for checking who wrote a line of
code even if the code has been copied and/or moved.

Philip Blakely (LSC) Introduction to Linux 117 / 182

Local changes

While developing your code, you may need to check what changes
you have made recently.

> git status .
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
new file: StiffenedGas.C
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout −− <file>..." to discard changes in

working directory)
modified: IdealGas.C
#
Untracked files:
(use "git add <file>..." to include in what will be

committed)
MieGruneisen.C

This shows that IdealGas.C has local changes (but not staged for
commit), StiffenedGas.C has been staged for addition (but not
committed), and MieGruneisen.C has not been staged for
addition.

Philip Blakely (LSC) Introduction to Linux 118 / 182

Local changes ctd - git

While developing your code, you may need to check what changes
you have made recently.

> git diff ./IdealGas.C
diff −−git a/IdealGas.C b/IdealGas.C
index 2d7a527..83ea3fc 100644
−−− a/IdealGas.C
+++ b/IdealGas.C
@@ −69,5 +69,5 @@ git commit

const double v y = state[V Y];
// Calculate kinetic energy

− const double ke = rho*(v x*v x + v y*v y);
+ const double ke = 0.5*rho*(v x*v x + v y*v y);

const double totalEnergy = ke + internalEnergy;

which shows the differences between your local version and the
staged version of the file.

This is not (necessarily) the same as the absolute latest version of
the repository.

Philip Blakely (LSC) Introduction to Linux 119 / 182

Roll-back to lastest version

You may decide that all the changes you have made since your last
commit or update are useless.

In this case, you can roll back your working copy to be the same
as the latest commit:
git checkout ./IdealGas.C

which completely discards the local changes, and there is no way
to recover them.

Philip Blakely (LSC) Introduction to Linux 120 / 182

Further committing - git

Once you have made various changes to your files, you indicate to
git that you want a particular set of files to be committed to the
repository:

git add IdealGas.C

and then commit the changes

git commit IdealGas.C

A text-editor will open (nano by default, or whatever you specify
via git config)

You should enter a useful log-message, e.g. “Corrected
kinetic-energy calculation”.

Save the file, and exit the editor.

The repository is stored locally, so no authentication is required.

Philip Blakely (LSC) Introduction to Linux 121 / 182

Notes on git’s staging

You will note that git uses a two-stage process when committing
changes.

In git, you have to explicitly schedule modified files to be
committed to the repository.

This allows you to break commits down into a set of logically
separate commits, and forces you to think about each modified file.

git therefore forces clearer thinking by default, as compared to
Subversion, for example.

Philip Blakely (LSC) Introduction to Linux 122 / 182

What should be in the repository?

The repository should contain everything required to recompile
and run your program(s).

Source files (.f .F .c .C .h .H etc.), Makefiles, settings files,
post-processing scripts, etc.

It should not contain files that can be generated from these,
e.g. object files, executables, PDFs of papers that are needed as
documentation, and other output files.

Most version-control systems work best with pure-text-based files,
as differences are easy to determine.

Binary (non-text) files can sometimes go into repositories, but you
are unlikely to get anything useful except individual revisions of
the files as they are probably in a complex and compressed format,
so that diff does not work well.

Pictures for inclusion in documentation are one type of binary file
that might go in a repository.

Philip Blakely (LSC) Introduction to Linux 123 / 182

Querying the repository

git log ./IdealGas.C

displays the commit messages associated with changes to the named
file.

commit d6f39d56a5179d150437827abf7292f91827cbe2
Author: Philip Blakely <pmb39@cam.ac.uk>
Date: Tue Aug 9 11:55:43 2022 +0100

Add Ideal−Euler and Euler−Ideal mixed Riemann solvers.
Required addition of extra functions to EoS for solving
Riemann
problems.

Philip Blakely (LSC) Introduction to Linux 124 / 182

Working with the repository

If you find that one part of your code has stopped working, and
you are sure which file(s) are involved, you can go back to previous
revisions.

Firstly, if you have any local changes to those files, you should
save a separate copy of them to avoid any loss of work. (Either
git commit or git stash.)

Then, roll those files back to an earlier revision:
git checkout 1c1f9c2dd44044ba1ab777be89fe08ae4e351cff \

IdealGas.C

and compile and test your program again.

You therefore have mixed revision-numbers of files in one
source-tree, which can become confusing.

Once you have, for example, determined that the code worked
with the earlier version of the file, you can update it again:
git checkout IdealGas.C

and try to fix it.
Philip Blakely (LSC) Introduction to Linux 125 / 182

Branching

There are at least two reasons to use branches in version control.

Firstly, you may want to develop a complex feature into your code,
which will take a lot of work (i.e. many commits) to get right. A
branch will allow separate development of this feature while your
original version can still be used, and modified independently.

Secondly, you may want to preserve an older version of your code,
and maintain it as a bug-fix version, i.e. you can make minor
corrections to it, even though you are making large modifications
to the main code.

You will notice that these are more-or-less the same thing viewed
from different angles.

Philip Blakely (LSC) Introduction to Linux 126 / 182

Branching in git

To create a branch of your code in git:

git branch Refactor
git switch Refactor

Now, the original trunk code version still points to the original
code version, but so does Refactor.

Any further commits will happen on the Refactor branch instead.

To switch back to the original branch:

git switch main

(or possibly development instead of main).

Philip Blakely (LSC) Introduction to Linux 127 / 182

Bisection

Imagine: You discover that your code fails to solve a standard problem
correctly, even though it did so three months (and 100 commits) ago.

Write a simple script that compiles your code and runs it against
the standard problem and checks it against the correct solution.

The script should exit with code 0 if the correct solution is found,
otherwise with code 1.

Then, in a checked-out version of your repository:

git bisect start
git bisect good a7398ffdb32
git bisect bad 9e51c89b32f
git bisect run ./test.sh

This will use a bisection method to find the first revision where
the test-case breaks.

This will not work well if the settings-file format has changed, for
example. In this case, you may need to examine the svn-bisect

script and modify it for your purposes.

Philip Blakely (LSC) Introduction to Linux 128 / 182

Commit separation

What happens if you are working on two separate changes to the
code at once, or notice a simple mistake while working on a major
rewrite?

Here, you should commit only the changes to one file, while
keeping the rest as a local modification.

If you have two sets of changes to one file that are somehow
independent, then you will need to take a copy of the file, revert
the original, and make only one set of changes before committing
again, and then making the remaining set of changes.

If this happens a lot, you may need to reconsider how well your
project is divided into separate files.

git only works with files at its most granular level.

Philip Blakely (LSC) Introduction to Linux 129 / 182

VCS as documentation

One day you may find yourself wondering why a particular line is
what it is.

Of course, this should be obvious, given that your code is
well-documented...

If not, though, you could run:

git blame EulerEquations.C
5243f11e pmb39 for(int d=0 ; d < 3 ; d++)
5243f11e pmb39 {
5243f11e pmb39 const real V d = prim[VEL+d];
c1ed290f stm31 cons[MOM + d] = rho * V d;
5243f11e pmb39 vSquared += V d * V d;
5243f11e pmb39 }

which will list the file with the last revision at which each line was
changed.

You can then look up the commit message associated with that
commit, which may also provide some help. This is not really a
substitution for good documentation, however.

Philip Blakely (LSC) Introduction to Linux 130 / 182

Backups

As ever, backups are vital.

Use the git bundle command or ensure that the directory
containing your repository is backed up.

If you lose the repository, you will have lost the development
history of your code, even if your code is intact.

git can also push commits to a remote repository, e.g. GitHub
(owned by Microsoft) or GitLab (run by GitLab Inc.)

Philip Blakely (LSC) Introduction to Linux 131 / 182

GUIs

In some cases, it is useful to see an overview of the repository and
its history in a more visual form.

git comes with its own GUIs: git-gui and gitk

git gui geared towards staging files for commit
gitk geared towards examining repository history

Philip Blakely (LSC) Introduction to Linux 132 / 182

Merging and conflicts

If you are working with others on a project, then they may be
making changes at the same time as you.

The first person to commit their work has priority, so what
happens if you then want to commit changes?

There are various scenarios, which have different solutions.

If you are working alone on your own local repository, similar
problems apply, where you and ”your colleague” are the same
person, but working on different branches of the project.

Philip Blakely (LSC) Introduction to Linux 133 / 182

Scenario 1: Changing different files

If your colleague changes a different set of files from you, then
when you commit, there may be no conflicts detected.

This is not the same as there not being any conflicts at all. You
may have changed different files in such a way that the code no
longer compiles, or has an obscure bug, or worse.

You should therefore always update your local version from the
main repsository, then test the updated code with your proposed
changes, and only then commit your changes.

Philip Blakely (LSC) Introduction to Linux 134 / 182

Scenario 2: Changing the same file(s)

If both you and your colleague attempt to change the same file(s),
then the repository will detect the conflicts with your colleague’s
version when you attempt to pull or merge theirs into your local
repository.

You must then resolve any conflicts before continuing.

> git merge trunk
Auto−merging IdealGas.C
CONFLICT (content): Merge conflict in IdealGas.C
Automatic merge failed; fix conflicts and then commit the

result.

Philip Blakely (LSC) Introduction to Linux 135 / 182

Scenario 2: Changing the same file(s)

Scenario 2a)

Your changes are to different places in the same file and these
changes do not affect each other.
git can probably resolve the former without any trouble.
The latter is up to you to determine.

Scenario 2b)

Your changes are to the same point in the file and these changes do
not affect each other.
This could happen if two changes are made to the same line.
git will allow you to examine the files and make appropriate edits
to ensure that both your changes have effectively been made.
When a conflict is detected, git allows you to edit them in, for
example, emacs, which has a plugin to make this easier.
Opening a git-conflicted file in emacs shows some SMerge regions
that illustrate the conflict.

Philip Blakely (LSC) Introduction to Linux 136 / 182

Scenario 3: Incompatible changes

When trying to resolve conflicts between the changes that you and
your colleague have made, you may discover that your
modifications are completely incompatible.

For example, you might be converting the code to use a
stiffened-gas equation of state, while they are converting it to use
a Hugoniot equation of state.

At this point, you will need to pause and consider how to proceed.

You may want to create separate branches for the code, so that
you can both work on your different versions without conflicting.

More likely, you will want to make wider changes to the code,
refactoring it to be able to use any equation of state.

Philip Blakely (LSC) Introduction to Linux 137 / 182

Summary

This should have given you some idea of the features of git.

It is worth trying them on a small or dummy project first to get
the hang of them before using them on a major project.

Philip Blakely (LSC) Introduction to Linux 138 / 182

EPSRC open-data

You should be aware that EPSRC requires all publications arising
from its funding to publish associated data in a public place.

This may include source-code.

You will therefore need to be able to extract the precise version of
code used to generate published results.

Before doing this, you should discuss this with your supervisor, as
there are sometimes reasons not to have to publish source-code.

Philip Blakely (LSC) Introduction to Linux 139 / 182

References

The main reference to git is freely available in PDF and web-based
format and is very well written with various examples and diagrams.

https://git-scm.com/doc

https://www.atlassian.com/git

Philip Blakely (LSC) Introduction to Linux 140 / 182

https://git-scm.com/doc
https://www.atlassian.com/git

