
Part VIII

Complexity and Data structures

Philip Blakely (LSC) Introduction to Linux 161 / 182



Data structures

Within scientific computing, it is important to understand the
availability of different data structures.

Choosing the wrong one can lead to poor code performance, either
due to algorithmic complexity or slow memory access patterns.

The appropriate data-structure depends on both the algorithm
and the architecture being programmed for.

The correct data-structure for an Intel CPU may be different from
that for an NVIDIA GPU.

Philip Blakely (LSC) Introduction to Linux 162 / 182



Computational complexity

Computational complexity is a measure of how many operations
are required to carry out a particular algorithm.

Here, operation includes any integer or floating point operation,
including those required to carry out memory accesses.

For example, the following (C++) statement takes 5 operations:

a[i*10 + j] = sqrt(i);

because this is really:

*(&a[0] + sizeof(double)*(i*10 + j)) = sqrt(i);

However, because computational complexity is typically only
concerned with asymptotics as the size of the data-set tends to
infinity, we do not usually worry about taking all these operations
into account.

Philip Blakely (LSC) Introduction to Linux 163 / 182



Big-O notation

Usually, an algorithm will be able to be applied to a particular
data-set size, or a particular input value.

The complexity analysis is then based on how changing this value
varies the number of operations required to complete the
calculation.

Some algorithms may depend on more than one input parameter,
and therefore so does the complexity.

The complexity is usually only given as the fastest growing term,
e.g. O(n3), O(n2 log n), O(n!)

Philip Blakely (LSC) Introduction to Linux 164 / 182



Dot-product

The dot-product of two vectors a and b of length N is:

a · b = a1b1 + . . . aNbN

This clearly requires 2N − 1 operations.

We usually drop constants and only quote the most significant
term, so the complexity is O(N).

Philip Blakely (LSC) Introduction to Linux 165 / 182



Matrix product

The matrix product of two matrices A (M ×N) and B(N × P )
can be computed as:

cij = ai0b0j + ai1b1j + . . .+ aiNbNj

Each element takes 2N − 1 operations to compute, and therefore
the whole product requires MP (2N − 1) operations.

The complexity is therefore O(MNP ).

There are many ways of implementing matrix multiplication,
however, and some may be more efficient than others, if the
hardware characteristics of the machine on which they are
implemented are taken into account.

Complexity usually corresponds to an algorithm, rather than to an
implementation of an algorithm.

Philip Blakely (LSC) Introduction to Linux 166 / 182



Matrix product ctd

The preceding algorithm for matrix multiplication is the most
obvious, is the one you were taught at school, and, perhaps
surprisingly, not the most efficient.

More efficient algorithms exist with complexities (for n× n
matrices):

Strassen algorithm O(n2.807)
Coppersmith–Winograd algorithm O(n2.376)
Optimised CW-like algorithms O(n2.373)

If we make assumptions about the types of matrices involved, then
specialised algorithms can be written.

For example, the product of two diagonal matrices can obviously
be computed in time O(n).

Philip Blakely (LSC) Introduction to Linux 167 / 182



Data structures

I shall use C++ nomenclature here, as the C++ STL does use
standardised names for data structures.
Other languages may have equivalent data-structures, or you can write
code to emulate them.
I shall cover the following:

vector

list

map

unordered map

Philip Blakely (LSC) Introduction to Linux 168 / 182



Other language equivalents

C++ Python Java

vector list ArrayList

list LinkedList

map TreeSet

unordered map dictionary HashSet

Philip Blakely (LSC) Introduction to Linux 169 / 182



vector

A vector is an indexed set of elements a, which are guaranteed to
be contiguous in memory.

The ith element can be found at memory location &a[0] + i*n

where n is the size of an element in bytes.

Accessing a single numbered element therefore requires constant
complexity (a multiplication and addition).

Philip Blakely (LSC) Introduction to Linux 170 / 182



list

A list is a set of ordered elements which have pointers to the
preceding and following elements in the list (and no other
information).

Given one list element, it is very easy to find the next but, in
order to find the ith element, it is necessary to start at the
beginning and go forward i− 1 elements.

Accessing a single numbered element therefore requires O(n)
complexity on average, where n is the number of elements in the
list.

Philip Blakely (LSC) Introduction to Linux 171 / 182



Insertion/Deletion

Consider what must happen if we want to insert a new element
into a vector or a list at a particular position.

For a vector, we must move all elements m. . .N to
m+ 1 . . . N + 1 and then write the new element into position m.

This takes at least N −m operations. On average, insertion into a
vector has complexity O(N).

For a list, assuming we already know which element is at the
insertion location m, we need only

Redefine m->prev elt->next elt to point to the new element.
Redefine m->prev elt to point to the new element.
Define the new element’s prev elt and next elt to point to the
appropriate elements.

This therefore requires only 4 operations, or O(1).

Deletion for both structures requires a similar set of operations.

Philip Blakely (LSC) Introduction to Linux 172 / 182



map

A map is a one-to-one mapping from, say, a set of strings to a set
of integers (a mapping from names to telephone numbers, for
example).

The set being mapped from (the key-type) is required to have a
well-defined ordering.

The way that a map is stored is very likely to be in a tree-based
structure.

You should not rely on any assumptions about the way the map is
implemented, though.

Philip Blakely (LSC) Introduction to Linux 173 / 182



map ctd

Each element consists of a key k and a value v.

The elements are ordered so that those on an element’s left have a
smaller key, and those on the right have a larger key.

Assume that k1 < k2 < k3 < k4 < k5

“Smaller” and “larger” are based on the well-defined ordering
specified by the programmer.

In the case of strings, the ordering is alphabetical by default (for
C++).

Philip Blakely (LSC) Introduction to Linux 174 / 182



Insertion into a map

Insertion of an element into a map relies on the value of its key.

Finding the correct location requires working from the top of the
tree downwards, comparing the key to each tree node, until the
correct location is found.

At the correct location, updating the pointers of nearby nodes is a
constant-cost operation.

Assuming a well-balanced binary tree, its height is approximately
log2 n, so the cost of inserting a new element is O(log2(n)).

Philip Blakely (LSC) Introduction to Linux 175 / 182



Unordered map

An unordered map is based on a hash
table, and does not require an ordering
on the keys.

We require a hash function h, typically
mapping a key to an integer.

If the hash function maps multiple keys
to the same value, we have a hash
collision, and multiple elements must be
stored under the same hash value. For
example, hash(k3)=hash(k4).

The performance of an unordered map
therefore depends on the hash function
and the data in it.

The hash function should be defined to
avoid collisions in general.

Philip Blakely (LSC) Introduction to Linux 176 / 182



Other data-structures

C++ has several other data-structures with slightly different
properties.

A deque is a double-ended queue - somewhere between a vector
and a linked-list.

A set is like a map but without any value storage - it only stores
the set of keys.

A multimap is like a map but allows multiple values for a single key.

These can be implemented in other languages, requiring some or
more effort.

Philip Blakely (LSC) Introduction to Linux 177 / 182



Choosing a data-structure

When choosing a data-structure to use, you need to consider:

How do I get values to put into the container?
What information do I need out of the container?
What operations do I need to invoke on the container?

Ideally, you then choose the data structure that has the lowest
cost for all of the operations.

If this is not possible, you should make an educated choice based
on which will be the most often used operations.

If using C++ you may be able to write classes so that you can
easily try different data structures without modifying too much
external code.

Philip Blakely (LSC) Introduction to Linux 178 / 182



Example - Fast Marching Method

Given an approximate signed-distance function on a 2D grid, we
use the Fast-Marching Method to sweep across a domain to
initialize a better approximation everywhere.

A signed-distance function φ allows us to represent an interface
between two materials on a 2D grid.

The interface is represented by the implicit contour φ(x) = 0.

We update the signed-distance function using a finite-difference
method.

This may not preserve the signed-distance nature of the function.

Philip Blakely (LSC) Introduction to Linux 179 / 182



Fast Marching Method

Start with all interface elements.

(These are defined to be cells
where a neighbouring φ has a
different sign.)

(*) For the cell (i, j) with the
smallest signed distance, loop
over its immediate neighbours.

If an updated φ has not been
found, compute one from
already-computed values.

Place the newly computed cell
and value into the sweeping set.

Remove cell (i, j) from the set.

Go to (*) unless the set is empty.

Philip Blakely (LSC) Introduction to Linux 180 / 182



Fast Marching Method

We need to store a set of cells with their signed distances.

These need to be ordered by their signed distances.

We always need to extract the cell with smallest signed distance.

The cells being inserted may have any signed distance.

This suggests we need an association from a signed distance to a
cell, with an inexpensive insertion into an already-sorted set.

The answer seems to be a map from signed distance to a cell-index.

A little thought suggests we need a multimap as multiple cells may
have the same signed distance.

Insertion then has cost O(log(N)) and extracting the smallest
distance cell has cost O(1).

Philip Blakely (LSC) Introduction to Linux 181 / 182



Summary

When implementing any algorithm, it is worth considering the
data structure(s) required.

A knowledge of the available data structures in your chosen
language is useful.

An overall knowledge of standard data structures is also useful in
case an appropriate one is not available in your language.

It may be easier to implement a sub-optimal algorithm, but to
leave your options open to implement a different one if it proves a
bottle-neck.

Philip Blakely (LSC) Introduction to Linux 182 / 182


