
Parallel I/O

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) Parallel I/O 1 / 22

Input/Output

All scientific codes need some form of output.

In many cases these days, this is of the order of Gigabytes; we
tend do post-processing rather than run-time reduction of data.

If codes run in parallel, is the bottleneck for scalability the
output? Amdahl’s law comes into play once more.

Most published demonstrations of parallel scaling are with output
turned off.

Philip Blakely (LSC) Parallel I/O 2 / 22

Things you should already have considered

How much data do you need to output? Is there any way of
reducing this?

Consider what plots/data you actually need for validation or
comparison with experiment or for prediction.

Consider what file-format(s) your visualisation/post-processing
packages support. If necessary, consider writing your own
post-processing tool or visualisation plugin to help.

A complete dump of all the code’s internal data is overkill in some
cases, but that choice is often needed for debugging, full analysis
and pretty pictures for publications.

Philip Blakely (LSC) Parallel I/O 3 / 22

Poor-man’s I/O

The easiest method is to copy data to the root process and output
there.
This may have the following issues:

Memory usage on root process.

Data communication time may adversely affect performance.

Alternatively, output one file per process
This may have the following issues:

Visualisation/post-processing is harder (have to read/process
many files)

File-system performance is not necessarily better.

If only one disk is involved, then extra seek-overhead as different
processes write may be a problem.

Philip Blakely (LSC) Parallel I/O 4 / 22

MPI I/O

The MPI standard has a well-defined set of function calls to
handle parallel I/O.

Processes can read/write from their own offsets within a file:

MPI File open
MPI File write
MPI File write all
MPI File write at
...

See http://wgropp.cs.illinois.edu/courses/cs598-s16/

lectures/lecture32.pdf for an introduction.

This is hard to get right, though, and (probably) even harder to
get good performance.

The easiest file-format to output this way would be a single block
of binary data, where each process can trivially determine its
offset within the file.

Philip Blakely (LSC) Parallel I/O 5 / 22

http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture32.pdf
http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture32.pdf

HDF5

The HDF5 file-format and API is developed by the HDF-Group,
which began in 1987.

HDF5 is strictly speaking a file-format but one that allows a lot of
freedom to the user.

Essentially it’s a file-system packaged into a single file.

Allows for n-dimensional data arrays of general datatypes, groups
(like directories), data-attributes (meta-data), and symlinks.

It is up to you how to define your data structure (and hence your
post-processing approach).

Official APIs exist for C, Fortran, C++ and Java.

A Python interface h5py exists, but not produced by HDFGroup.

(Note: HDF is now moving to a paid-for Enterprise Support
Edition plus a free Community Edition. The latter should be
suitable for researchers, I hope...)

Philip Blakely (LSC) Parallel I/O 6 / 22

Compilation

HDF5 needs to be compiled with the same compiler and MPI
implementation as the rest of your software package.

On CSD3, need to load appropriate module, use:

spack find −dvl hdf5

to find an appropriate one (lists against compilers used, MPI used,
and configuration flags).

Philip Blakely (LSC) Parallel I/O 7 / 22

Data types

Data-types include all C/Fortran types, plus any compound types
you create yourself (much like MPI)

Data is stored in a platform agnostic way, independent of the
architecture, i.e. floating point numbers will be correct on porting
between different endian-ness architectures.

For example:

H5T NATIVE CHAR

H5T NATIVE FLOAT

H5T NATIVE DOUBLE

H5T NATIVE ULONG

H5T TIME

H5T ARRAY (Best for fixed-size vectors)

Philip Blakely (LSC) Parallel I/O 8 / 22

HDF5 API

To write a simple array of integer dimension dimn and length size[]

in each dimension:

int dimn = 1;
hsize t size[] = {3};
float myArray[] = {4,8,9};

// Open a file and get its handle
hid t fileId = H5Fcreate("MyData.hdf", H5F ACC TRUNC,
H5P DEFAULT, H5P DEFAULT);

// Define a group within the file
hid t groupId = H5Gcreate(fileId, "MyGroup", H5P DEFAULT,
H5P DEFAULT, H5P DEFAULT);

Philip Blakely (LSC) Parallel I/O 9 / 22

HDF5 API

// Create a dataspace which will be put into a data−set
hid t dataSpace = H5Screate simple(dimn, size, size);
// Create the data−set
hid t dataSet = H5Dcreate(groupId, "data", cellDataType,
dataSpace, H5P DEFAULT, H5P DEFAULT, H5P DEFAULT);

hid t fileSpace = H5Dget space(dataSet);

// Write the data itself, assuming it's in single−precision.
H5Dwrite(dataSet, H5T NATIVE FLOAT, H5S ALL, fileSpace,
H5P DEFAULT, (void*)myArray);

// Tidy up all data and file handles
H5Sclose(fileSpace);
H5Dclose(dataSet);
H5Sclose(dataSpace);
H5Gclose(groupId);

Philip Blakely (LSC) Parallel I/O 10 / 22

HDF5 API

Philip Blakely (LSC) Parallel I/O 11 / 22

HDF in parallel

HDF5 supports different processes outputing different data.

Typically, a single large data-set is created in a file, and each
process outputs a subset of this array:

hid t subarray = H5Sselect hyperslab(dataSpace,
H5S SELECT SET, start, stride, count, block)

where stride, count, block are arrays of size dimn.

Then:
H5Dwrite(dataSet, cellDataType, subarray, fileSpace, plistId,

startAddress);

HDF5 API and MPI implementation will work out how best to
schedule outputing of data.

This works best if your data is a distributed multi-dimensional
array.

Complexities occur if you’re doing something complicated such as
Adaptive Mesh Refinement...

Philip Blakely (LSC) Parallel I/O 12 / 22

HDF utilities

hdfview is a Java program that allows a simple GUI for viewing an
HDF file.
Other command line utilities include:

h5ls - list contents of an HDF5 file

h5dump - dump contents of an HDF5 object to stdout/file

h5diff - Compare two HDF5 files, or two groups within the same
HDF5 file.

$ h5dump MyData.hdf

HDF5 "./MyData.hdf" {

GROUP "/" {

GROUP "MyGroup" {

DATASET "data" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { (3) / (3) }

DATA { (0): 4, 8, 9 } } } } }

Philip Blakely (LSC) Parallel I/O 13 / 22

HDF5-based formats

The issue with HDF5 is that you still need to impose a layout on the
file itself.
Some research communities have defined HDF5 layouts for their needs:

CGNS (CFD General Notation System)
https://cgns.github.io/

NetCDF (Self-describibg array-oriented scientific data)
https://www.unidata.ucar.edu/software/netcdf/

HDF-EOS5 (Earth Observing System) from NASA
https://earthdata.nasa.gov/user-resources/

standards-and-references/hdf-eos5

Philip Blakely (LSC) Parallel I/O 14 / 22

https://cgns.github.io/
https://www.unidata.ucar.edu/software/netcdf/
https://earthdata.nasa.gov/user-resources/standards-and-references/hdf-eos5
https://earthdata.nasa.gov/user-resources/standards-and-references/hdf-eos5

Parallel file-systems

Ordinary disks can only maintain a serial input/output, so this
can become the bottleneck for large numbers of processes.

Parallel file-systems do exist: Lustre, Ceph, etc.

These have their own problems (see numerous e-mails from HPCS
about file-systems)

They also require some tuning effort from the application writer to
get the best performance out of them.

Philip Blakely (LSC) Parallel I/O 15 / 22

Striping

Lustre works by having multiple filestores (or Object Storage
Targets) which can be read/written separately.

Files can be striped across multiple OSTs, so that the available
bandwidth for reading/writing a file is increased proportionally
(assuming no bottlenecks on network/individual servers).

This does not happen automatically; you have to specify how a file
is striped ab initio.

See http://wiki.lustre.org/Main_Page

Philip Blakely (LSC) Parallel I/O 16 / 22

http://wiki.lustre.org/Main_Page

Lustre overview

Philip Blakely (LSC) Parallel I/O 17 / 22

Command line utilities

For Lustre (as on CSD3):

$ lfs getstripe ./test.out
lmm stripe count: 24
lmm stripe size: 1048576
lmm pattern: 1
lmm layout gen: 0
lmm stripe offset: 2

obdidx objid objid group
2 7398897 0x70e5f1 0

15 7542547 0x731713 0
4 7585327 0x73be2f 0

...
lfs setstripe −c 32 −S 1m ./newFile.hdf

For Ceph:

getfattr −n ceph.file.layout.pool file
setfattr −n ceph.file.layout.stripe unit −v 1048576 file2

These only work for the creation of new files/directories, so require
manual set-up for good performance.

Philip Blakely (LSC) Parallel I/O 18 / 22

MPI Implementation support

Intel 2018 compiler is required for full Lustre I/O support (I
think).

Intel 2017 only supported efficient Lustre reading.

Still need to set environment variables:

export I MPI EXTRA FILESYSTEM=on
export I MPI EXTRA FILESYSTEM LIST=lustre

OpenMPI and MPICH seem to have supported Lustre for much
longer, but I haven’t experimented with it.

Philip Blakely (LSC) Parallel I/O 19 / 22

HDF5 and parallelism

The HDF5 API needs to ensure that a file-structure is consistently
known across all processors.

Hence various functions require implicit communication:

Dataset creation/deletion
Group creation/deletion
Full set:
https://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

Therefore, it gives better performance to have a very simple group
and dataset layout.

Datasets can be written to from multiple processors
simultaneously using ’hyperslabs’ as previously demonstrated.

May be appropriate to have one set of functions to create
file-structure (quick: serialization matters less), and one set to
write the actual data (slow).

Philip Blakely (LSC) Parallel I/O 20 / 22

HDF and striping

MPI (and hence HDF) needs to be explicitly told about Lustre (or
similar) striping.

MPI Info fileIOInfo;
MPI Info create(&fileIOInfo);
MPI Info set(fileIOInfo, "striping unit", "1048576");
MPI Info set(fileIOInfo, "striping factor", "32");

See https:

//www.mpi-forum.org/docs//mpi-2.2/mpi22-report/node272.htm

for universal options.
Now, HDF5 can take the MPI Info object:

H5Pset fapl mpio(pListId, MPI COMM WORLD, fileIOInfo);
hid t fileId = H5Fcreate("MyData.hdf", H5F ACC RDWR,

H5P DEFAULT, pListId);

to improve its performance.

Philip Blakely (LSC) Parallel I/O 21 / 22

https://www.mpi-forum.org/docs//mpi-2.2/mpi22-report/node272.htm
https://www.mpi-forum.org/docs//mpi-2.2/mpi22-report/node272.htm

Testing performance

To test your machine’s performance:

IOR/mdtest: https://github.com/hpc/ior

EPCC: https://github.com/EPCCed/benchio

For testing your application’s performance:

Darshan: http://www.mcs.anl.gov/research/projects/darshan/

(Note: Must output Darshan logs to /home not /rds)

Darshan example output (Darshan output.pdf).

Philip Blakely (LSC) Parallel I/O 22 / 22

