
Profiling

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) Profiling for C++ 1 / 15

Part I

Profiling

Philip Blakely (LSC) Profiling for C++ 2 / 15

Profiling

As HPC programmers, we want our code to run as fast as possible.

How do we know which parts are causing the bottleneck?

Good profiling is essential; it may not be the parts you expect.

“Premature optimization is the root of all evil” - Donald Knuth

Philip Blakely (LSC) Profiling for C++ 3 / 15

Things you should already have considered

Correct algorithm

Basic data layout for reasonable cache performance

Do not copy data around more often than necessary; pass by
reference.

This talk is applicable to C/C++/Fortran only; other languages
have their own profiling tools.

Examples are given in C++ but the tools/APIs have C and Fortran
interfaces.

Philip Blakely (LSC) Profiling for C++ 4 / 15

Basic timing

Basic profiling can often be achieved by:

clock t start = clock();
// Do something expensive
clock t end = clock();
std::cout << "Total time " << (double)(end − start) /

CLOCKS PER SEC << "s" << std::endl;

Using some well-placed macros and putting them around likely
functions may be all you need.

More advanced use may require summing the time taken for
multiple calls to the same function.

Philip Blakely (LSC) Profiling for C++ 5 / 15

gprof

The next step is to use automatically instrumented profiling calls
from the compiler:
https://sourceware.org/binutils/docs/gprof/

With gcc, use the -pg option.

With icc, use the -p option.

Run instrumented code as normal, slowdown: Less than 5%.
Generates gmon.out file.

Post-process using: gprof ./MyCode ./gmon.out

Philip Blakely (LSC) Profiling for C++ 6 / 15

https://sourceware.org/binutils/docs/gprof/

gprof

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls Ts/call Ts/call name

100.04 0.03 0.03 dot(int, double*, double*)

0.00 0.03 0.00 1 0.00 0.00 _GLOBAL__sub_I__ZN7SCPointC2Ei

0.00 0.03 0.00 1 0.00 0.00 _GLOBAL__sub_I_main

Philip Blakely (LSC) Profiling for C++ 7 / 15

valgrind

http://valgrind.org/

No recompilation needed (debugging symbols -g required).

Essentially a CPU emulator; includes cache and branch-prediction
simulation. Run normal code as:

valgrind --tool=callgrind --callgrind:dump-instr=yes

--cache-sim=yes --branch-sim=yes ./MyCode

Slowdown: Factor of 30-50.

Visualise using kcachegrind.

Philip Blakely (LSC) Profiling for C++ 8 / 15

Score-P

http://www.vi-hps.org/projects/score-p/

Special compiler/linker wrapper required. Available on CSD3 as a
module:

module load scorep/2.0.2/intel-impi-latest

scorep-cxx -c MyMPICode.C -O3 MyMPICode.o

export SCOREP_ENABLE_TRACING=1

export SCOREP_ENABLE_PROFILING=1

export SCOREP_EXPERIMENT_DIRECTORY=./MyMPICode_ScoreP_np1

./MyMPICode

Slowdown: Varies but usually less than 5%

Generates output in $SCOREP EXPERIMENT DIRECTORY in otf2
format.

Philip Blakely (LSC) Profiling for C++ 9 / 15

Visualisation

Various visualisation tools are available for SCOREP output:

Cube (GUI not brilliant)

Periscope, TAU (did not compile immediately...)

Vampir - commercial code - cheapest option about 500.

I have mainly used Vampir; seems to have the clearest UI.

Philip Blakely (LSC) Profiling for C++ 10 / 15

MPI profiling

If we simply profile individual MPI processes, we have no visibility
of what causes an MPI function call to wait.

The MPI standard allows for profiling functions/hooks to be
implemented and labelled with the universal wall-clock time.

Score-P does this for most MPI functions.

Philip Blakely (LSC) Profiling for C++ 11 / 15

MPI Visualisation

Vampir comes into its own when applied to MPI codes.

Philip Blakely (LSC) Profiling for C++ 12 / 15

Processor instructions

papi avail:

PAPI_L1_DCM Level 1 data cache misses

PAPI_L1_ICM Level 1 instruction cache misses

PAPI_L1_TCM Level 1 cache misses

...

PAPI_FP_OPS Floating point operations

PAPI_SP_OPS Floating point operations; optimized to count scaled single precision vector operations

PAPI_DP_OPS Floating point operations; optimized to count scaled double precision vector operations

Note that these are only available on Xeon-class processors, not
i7-class.

export SCOREP_METRIC_PAPI=PAPI_FP_OPS,PAPI_VEC_DP,PAPI_L1_TCM

See results in Vampir.

Philip Blakely (LSC) Profiling for C++ 13 / 15

Score-P user instrumentation

Although the scorep-cxx wrapper instruments code
automatically, this may be overkill (e.g. in case of many small
inlined functions).
Better focused profiling may be achieved by turning off all
function instrumentation and using macros:
int f(){

SCOREP USER FUNC BEGIN();
SCOREP USER REGION DEFINE(MyAlgPart1);
SCOREP USER REGION BEGIN(MyAlgPart1,
"AlgorithmPart1",SCOREP USER REGION TYPE COMMON);

/* Some code; */
SCOREP USER REGION END(MyAlgPart1);

SCOREP USER REGION DEFINE(MyAlgPart2);
SCOREP USER REGION BEGIN(MyAlgPart2,
"AlgorithmPart2",SCOREP USER REGION TYPE COMMON);

/* Some other code;*/
SCOREP USER REGION END(MyAlgPart2);

SCOREP USER FUNC END();
}

Philip Blakely (LSC) Profiling for C++ 14 / 15

Unexpected things you may find

Multiple small memory allocations - try using a pool of memory
instead

pow function in glibc used to run very slowly for certain inputs.

Input/output performance

Philip Blakely (LSC) Profiling for C++ 15 / 15

	Profiling

