
Valgrind

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) Valgrind 1 / 21



Part I

Valgrind

Philip Blakely (LSC) Valgrind 2 / 21



Valgrind

http://valgrind.org/

Pronunciation: The ”Val” as in the word ”value”. The ”grind” is
pronounced with a short ’i’ – ie. ”grinned” (rhymes with ”tinned”)
rather than ”grined” (rhymes with ”find”).

Origin: Valgrind is the name of the main entrance to Valhalla.

Valgrind is an emulator, supporting a wide range of modern
processors.

It contains a number of tools from memory usage (amount,
uninitialised data) to performance.

Philip Blakely (LSC) Valgrind 3 / 21



Supported processors

As of Version 3.13 (June 2017):

x86/Linux: Up to and including SSE3 instructions.

x86 64 (AMD64/Linux): Up to and including AVX2 instruction.

ARM64/Linux

AMD64/Darwin (Mac OS X - 10.9.x and later)

Philip Blakely (LSC) Valgrind 4 / 21



Memcheck - overview

Valgrind’s default tool is Memcheck: --tool=memcheck

All memory allocated via malloc, new, new[] (and similar) is
tracked.

Memory allocated on stack (local variables) is checked for
initialization.

Checks (mostly) heap based memory only.

Philip Blakely (LSC) Valgrind 5 / 21



Memcheck

Errors detected:

Access to data outside a heap-allocated region

Segmentation faults

Branch statements based on uninitialised data

Mismatched new [] and delete (for example)

And not detected...

Floating point exceptions

Copying or arithmetic operations on uninitialised data (Note that
sqrt, sin, etc. involve branches internally and will be picked up.)

Philip Blakely (LSC) Valgrind 6 / 21



Memcheck - Example

valgrind ./UninitData

Invalid write of size n

Conditional jump depends on uninitialised value

Add --track-origins=yes

Philip Blakely (LSC) Valgrind 7 / 21



Memcheck - Run-time macros

Sometimes you want to check whether particular data is initialised,
without artificially introducing a branch-statement based on it.

#include <valgrind/memcheck.h>
VALGRIND CHECK MEM IS ADDRESSIBLE(dataPtr, sizeof(double));
VALGRIND CHECK MEM IS DEFINED(dataPtr, sizeof(double));
VALGRIND CHECK VALUE IS DEFINED(myVariable);

will cause Memcheck to test for the data being initialised.
The first two have return values of the first address not
addressible/initialised.

Philip Blakely (LSC) Valgrind 8 / 21



Memcheck - Attaching a debugger

Older versions of valgrind allowed you to attach a debugger in the
same terminal to a valgrind running process.

Now, the process is slightly more complex, but allows better
diagnostics.

Pass the options: --vgdb=yes --vgdb-error=0

Now at start-up, valgrind displays:

Now invoke gdb on the same executable, and within gdb:

target remote | /usr/lib/valgrind/../../bin/vgdb

Philip Blakely (LSC) Valgrind 9 / 21



Memcheck - checking memory status

From within gdb attached as above, you can check which variables
are initialized.

(gdb) print data
(float *) 0x5a20040

(gdb) monitor get vbits 0x5a20040 24
ffffffff 00000000 00000000 00000000 00000000 00000000

Showing that the first 4 bytes are undefined, and the next 20 are
defined.

monitor get vbits 0x5a20038 24
ffffffff 00000000 00000000 00000000

Showing that the previous 8 bytes are not accessible (and may
cause a seg-fault if accessed).

Now introduce uninitialized data from stack and try again...

Philip Blakely (LSC) Valgrind 10 / 21



Leak checking

The option --leak-check=yes will generate a list of all memory
not freed using free / delete at the end of the program.

Use your judgement as to whether this is important or not; if a
memory allocation is only done once (and leaks), it may not
matter.

There are different levels of memory loss:

Definitely lost: No pointers to the data exist at program exit.
Still reachable: A pointer to the leaked memory can be found via
another pointer from non-lost memory
Indirectly lost: A pointer to the leaked memory can only be found
from otherwise lost memory.
Possibly lost: A pointer offset from the originally allocated data
start has been found, i.e. it may be possible to recover the original
pointer and free the memory.

Example: valgrind --leak-check=full DataLeak

Philip Blakely (LSC) Valgrind 11 / 21



Suppressions

All valgrind errors can be suppressed.

This may be useful for ignoring errors from libraries over which
you have no control.

Use the --gen-suppressions option to write a suppressions file.

Philip Blakely (LSC) Valgrind 12 / 21



SGCheck

SGCheck aims to do what Memcheck does, only for stack-based
arrays.

It does this heuristically, assuming that instructions accessing a
particular array should always access that array.

Thus, a loop that attempts to access out-of-bounds of an array:

int a[10];
for(int i=0 ; i <= 10 ; i++) a[i] = i;

will be caught.

Some false positives may arise, though.

See valgrind --tool=exp-sgcheck ./SGDemo

However, I haven’t used this tool much; most data in HPC
applications is on the heap.

Philip Blakely (LSC) Valgrind 13 / 21



Massif - overview

Massif periodically takes a snapshot of live heap-allocated
memory: its size and point of allocation.

It can therefore pick up on memory leaks that are cleaned up at
program exit (via destructor or similar).

To run using Massif:

valgrind −−tool=massif ./MassifDemo

and post-process with:

ms print massif.out.12345 > massif.out.12345.pp

Philip Blakely (LSC) Valgrind 14 / 21



Massif snapshot frequency

The frequency of snapshots is heuristically defined, but Massif will
try to capture memory-use peaks.

Typically, it will take between 50 and 100 snapshots over any
program.

Detailed snapshots with complete stack-traces of the provenance of
all memory allocated are only taken occasionally. Use
--detailed-freq=1 for more of these.

Philip Blakely (LSC) Valgrind 15 / 21



Callgrind

Callgrind profiles code according to numbers of instructions used,
and estimation of branch prediction and cache use

valgrind --tool=callgrind ./md demo

Visualise using kcachegrind, at source-line and instruction level

Caveats: The cache and branch predicition may not be
particularly realistic.

Philip Blakely (LSC) Valgrind 16 / 21



Helgrind

Thread error detector.

Detects potential deadlocks and data-races with pthreads

Pthreads not advisable for HPC development; use MPI or
OpenMP.

Philip Blakely (LSC) Valgrind 17 / 21



DRD

Data-Race Detector.

Able to detect data-races and other conflicts within threaded
programs.

Some OpenMP errors may be detectable with this tool.

Philip Blakely (LSC) Valgrind 18 / 21



DHat

Dynamic heap analysis tool.

Analyses how much data is used out of dynamically allocated
arrays and how long blocks are allocated for.

Useful for detecting:

Arrays which are sparsely used (reconsider data-layout)
Code lines which allocate short-lived blocks of memory (reuse
existing heap memory, change algorithm, or consider a memory
pool)
Code-lines which allocate blocks of memory that do not leak, but
exist for a long time within the code (may well be intentional, but
can suggest regions that are almost memory-leak-like).

Philip Blakely (LSC) Valgrind 19 / 21



.valgrindrc

You can create a /.valgrindrc file containing, for example:

−−memcheck:−−leak−check=yes
−−callgrind:cache−sim=yes
−−callgrind:branch−sim=yes
−−callgrind:simulate−wb=yes
−−callgrind:simulate−hwpref=yes
−−callgrind:cacheuse=yes
−−callgrind:dump−instr=yes

to save typing at the command line.

Philip Blakely (LSC) Valgrind 20 / 21



Valgrind documentation

See /usr/share/doc/valgrind/valgrind manual.pdf.gz
Very detailed description of valgrind and well written.

Philip Blakely (LSC) Valgrind 21 / 21


	Profiling

