
Valgrind

Philip Blakely

Laboratory for Scientific Computing, University of Cambridge

Philip Blakely (LSC) Valgrind 1 / 21



Part I

Valgrind

Philip Blakely (LSC) Valgrind 2 / 21



Valgrind

http://valgrind.org/

Pronunciation: The ”Val” as in the word ”value”. The ”grind” is
pronounced with a short ’i’ – ie. ”grinned” (rhymes with ”tinned”)
rather than ”grined” (rhymes with ”find”).

Origin: Valgrind is the name of the main entrance to Valhalla.

Valgrind is an emulator, supporting a wide range of modern
processors.

It contains a number of tools from memory usage (amount,
uninitialised data) to performance.
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Supported processors

As of Version 3.13 (June 2017):

x86/Linux: Up to and including SSE3 instructions.

x86 64 (AMD64/Linux): Up to and including AVX2 instruction.

ARM64/Linux

AMD64/Darwin (Mac OS X - 10.9.x and later)
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Memcheck - overview

Valgrind’s default tool is Memcheck: --tool=memcheck

All memory allocated via malloc, new, new[] (and similar) is
tracked.

Memory allocated on stack (local variables) is checked for
initialization.

Checks (mostly) heap based memory only.
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Memcheck

Errors detected:

Access to data outside a heap-allocated region

Segmentation faults

Branch statements based on uninitialised data

Mismatched new [] and delete (for example)

And not detected...

Floating point exceptions

Copying or arithmetic operations on uninitialised data (Note that
sqrt, sin, etc. involve branches internally and will be picked up.)
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Memcheck - Example

valgrind ./UninitData

Invalid write of size n

Conditional jump depends on uninitialised value

Add --track-origins=yes
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Memcheck - Run-time macros

Sometimes you want to check whether particular data is initialised,
without artificially introducing a branch-statement based on it.

#include <valgrind/memcheck.h>
VALGRIND CHECK MEM IS ADDRESSIBLE(dataPtr, sizeof(double));
VALGRIND CHECK MEM IS DEFINED(dataPtr, sizeof(double));
VALGRIND CHECK VALUE IS DEFINED(myVariable);

will cause Memcheck to test for the data being initialised.
The first two have return values of the first address not
addressible/initialised.
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Memcheck - Attaching a debugger

Older versions of valgrind allowed you to attach a debugger in the
same terminal to a valgrind running process.

Now, the process is slightly more complex, but allows better
diagnostics.

Pass the options: --vgdb=yes --vgdb-error=0

Now at start-up, valgrind displays:

Now invoke gdb on the same executable, and within gdb:

target remote | /usr/lib/valgrind/../../bin/vgdb
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Memcheck - checking memory status

From within gdb attached as above, you can check which variables
are initialized.

(gdb) print data
(float *) 0x5a20040

(gdb) monitor get vbits 0x5a20040 24
ffffffff 00000000 00000000 00000000 00000000 00000000

Showing that the first 4 bytes are undefined, and the next 20 are
defined.

monitor get vbits 0x5a20038 24
ffffffff 00000000 00000000 00000000

Showing that the previous 8 bytes are not accessible (and may
cause a seg-fault if accessed).

Now introduce uninitialized data from stack and try again...
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Leak checking

The option --leak-check=yes will generate a list of all memory
not freed using free / delete at the end of the program.

Use your judgement as to whether this is important or not; if a
memory allocation is only done once (and leaks), it may not
matter.

There are different levels of memory loss:

Definitely lost: No pointers to the data exist at program exit.
Still reachable: A pointer to the leaked memory can be found via
another pointer from non-lost memory
Indirectly lost: A pointer to the leaked memory can only be found
from otherwise lost memory.
Possibly lost: A pointer offset from the originally allocated data
start has been found, i.e. it may be possible to recover the original
pointer and free the memory.

Example: valgrind --leak-check=full DataLeak
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Suppressions

All valgrind errors can be suppressed.

This may be useful for ignoring errors from libraries over which
you have no control.

Use the --gen-suppressions option to write a suppressions file.
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SGCheck

SGCheck aims to do what Memcheck does, only for stack-based
arrays.

It does this heuristically, assuming that instructions accessing a
particular array should always access that array.

Thus, a loop that attempts to access out-of-bounds of an array:

int a[10];
for(int i=0 ; i <= 10 ; i++) a[i] = i;

will be caught.

Some false positives may arise, though.

See valgrind --tool=exp-sgcheck ./SGDemo

However, I haven’t used this tool much; most data in HPC
applications is on the heap.
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Massif - overview

Massif periodically takes a snapshot of live heap-allocated
memory: its size and point of allocation.

It can therefore pick up on memory leaks that are cleaned up at
program exit (via destructor or similar).

To run using Massif:

valgrind −−tool=massif ./MassifDemo

and post-process with:

ms print massif.out.12345 > massif.out.12345.pp
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Massif snapshot frequency

The frequency of snapshots is heuristically defined, but Massif will
try to capture memory-use peaks.

Typically, it will take between 50 and 100 snapshots over any
program.

Detailed snapshots with complete stack-traces of the provenance of
all memory allocated are only taken occasionally. Use
--detailed-freq=1 for more of these.
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Callgrind

Callgrind profiles code according to numbers of instructions used,
and estimation of branch prediction and cache use

valgrind --tool=callgrind ./md demo

Visualise using kcachegrind, at source-line and instruction level

Caveats: The cache and branch predicition may not be
particularly realistic.
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Helgrind

Thread error detector.

Detects potential deadlocks and data-races with pthreads

Pthreads not advisable for HPC development; use MPI or
OpenMP.
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DRD

Data-Race Detector.

Able to detect data-races and other conflicts within threaded
programs.

Some OpenMP errors may be detectable with this tool.

Philip Blakely (LSC) Valgrind 18 / 21



DHat

Dynamic heap analysis tool.

Analyses how much data is used out of dynamically allocated
arrays and how long blocks are allocated for.

Useful for detecting:

Arrays which are sparsely used (reconsider data-layout)
Code lines which allocate short-lived blocks of memory (reuse
existing heap memory, change algorithm, or consider a memory
pool)
Code-lines which allocate blocks of memory that do not leak, but
exist for a long time within the code (may well be intentional, but
can suggest regions that are almost memory-leak-like).
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.valgrindrc

You can create a /.valgrindrc file containing, for example:

−−memcheck:−−leak−check=yes
−−callgrind:cache−sim=yes
−−callgrind:branch−sim=yes
−−callgrind:simulate−wb=yes
−−callgrind:simulate−hwpref=yes
−−callgrind:cacheuse=yes
−−callgrind:dump−instr=yes

to save typing at the command line.
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Valgrind documentation

See /usr/share/doc/valgrind/valgrind manual.pdf.gz
Very detailed description of valgrind and well written.
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