
How Computers Handle Numbers

Some of the Sordid Details

Nick Maclaren

July 2009

How Computers Handle Numbers – p. 1/??

This Is Now “Later”

Explanations of a few of the warnings

Please ask for more detail if interested

WARNING: This May Cause Nightmares

Anyone already confused should leave now
Yes, I AM serious about that!

How Computers Handle Numbers – p. 2/??

More on Shifts

Hardware and languages mess these up
I know the history/excuses, from 40 years back

[Gate count on discrete--logic computers]
%deity alone knows why no improvement

Shifts often unsigned only in hardware
Involving the sign bit can have weird effects

Usually, only some bits of the count used
Typically, the bottom 5/6/8 bits of count
Why? The ICL 1904 (c. 1965) did it properly

How Computers Handle Numbers – p. 3/??

What Languages Do

Shifts ≥ bits in word usually undefined
As well as when shift value is negative

Java defined, but uses only 5/6 bits of shift

Usually undefined if signed shifts overflow
I.e. left shift a one into or out of sign bit
Right shifts on negatives usually unspecified

As mentioned earlier, Python gets these right
Why don’t other languages do the same?

How Computers Handle Numbers – p. 4/??

More on Signed/Unsigned

Exactly what does the language specify?
• May vary with compiler versions, options, etc.
Main ‘‘gotcha’’ is with implicit conversions

• Rules often depend on language context
In C: preprocessor/constant/ initializer/other
Often undefined ⇒ behaviour unpredictable

C result depends on order of type changes
Not just signed/unsigned/float but size of number

How Computers Handle Numbers – p. 5/??

C/C++ Signed/Unsigned (1)

C/C++ can be insane even when defined

Assume 32--bit ints and 64--bit longs:
• (long)--0x7F000000 = --2130706432
• (long)--0x80000000 = 2147483648

char x = ’a’; x == ’a’ may be false

char x = ’a’; islower(x) may be undefined

How Computers Handle Numbers – p. 6/??

C/C++ Signed/Unsigned (2)

extern void fred(long,long);
int a = 1, b = --1;

unsigned int c = 1, d = --1;

long A = 1, B = --1;

unsigned long C = 1, D = --1;

fred(a*d,b*c) ⇒ fred(--1,--1)

fred(A*D,B*C) ⇒ fred(--1,--1)

fred(a*D,b*C) ⇒ fred(--1,--1)

fred(A*d,B*c) ⇒fred(--1,--1) . . .

. . . OR ⇒ fred(4294967295,--1)

How Computers Handle Numbers – p. 7/??

More on IEEE Signed NaNs

Consider X = 0.0/0.0 = NaN
Fortran SIGN(1.0,X) and C copysign(1.0,X)
Both must be either --1.0 or +1.0, unpredictably

And, for both, SIGN(1.0,X) = --SIGN(1.0,--X)

But SIGN(1.0,0.0+X), SIGN(1.0,1.0*X) etc.?

They must be either --1.0 or +1.0, unpredictably

That is a useful specification? Get real

How Computers Handle Numbers – p. 8/??

IEEE and Decimal (1)

Two encodings (a committee compromise)
One encodes 3 decimal digits into 10 bits

The other uses binary, but bounded by 10
N

The standard says ‘bad’ values are valid
Random rubbish will give defined nonsense

Exact half rounding is language--defined
It does have a recommended default

How Computers Handle Numbers – p. 9/??

IEEE and Decimal (2)

Infinities and NaNs are similar to binary
No denormalised numbers but there are cohorts

Probably separate decimal and binary types
Probably only IBM will push it much

Unformatted I /O may well become much trickier
There MAY be compiler options to convert
That is possible in Fortran and C++ but not C

How Computers Handle Numbers – p. 10/??

Decimal Cohorts

Just like IBM 370 unnormalised numbers
E.g. 1.23 = 0.123 × 10

1
= 0.00123 × 10

3

Cohort members are used in arcane ways
I haven’t bothered to study this area in detail
May cause strange output (e.g. 0.00123e32)

Decimal might do just what you want
And pigs might fly, but it’s not likely

How Computers Handle Numbers – p. 11/??

IEEE 754 Rounding Modes

DON’T GO THERE

The reasons are too complicated to go into
Yes, even in these ‘extra’ slides – sorry

Nor primarily IEEE 754’s fault
Please ask if you want to know them

How Computers Handle Numbers – p. 12/??

Exception Handling Design

Clean model 1 (trad. /LIA--1) –-- trap on failure
Now generally rejected on dogmatic grounds

Clean model 2 (IEEE 754) –-- use error values
OK, when done properly –-- but it isn’t

Ghastly model 3 (Java/C99/C++?) –-- define result
Changes numeric error to logical error

Ghastly model 4 (very common) –-- undefined
If you make a mistake, that’s your problem

How Computers Handle Numbers – p. 13/??

Fortran and IEEE Exceptions (1)

This is available only in Fortran 2003
It defines some IEEE 754 exception handling
Actually pretty well, considering the constraints

• But an implementation need not support it

I don’t know many implementations yet, either
I expect to retire before seeing it much used
I have no idea how useful or reliable it will be

How Computers Handle Numbers – p. 14/??

Fortran and IEEE Exceptions (2)

Flags are associated with the call tree
They are saved and cleared on procedure entry
And merged back on procedure return

Flags never get unset except by programmer
Intrinsics and I /O never set flags unnecessarily

But any serious exception flag shows an error
I.e. Divide--by--zero, overflow and invalid

How Computers Handle Numbers – p. 15/??

Fortran and IEEE Exceptions (3)

• Big question – are they set reliably?

There is one explicit exception
IF (X/Y > Z) PRINT *, ’Oh’
And the general requirement is a little vague

• Please tell me if you investigate!

How Computers Handle Numbers – p. 16/??

C99 and IEEE Exceptions

CENSORED
Reason: good taste and public decency

Ask me for the sordid details if you need it
• You cannot imagine the ‘‘gotchas’’
Don’t trust anything that implies it is useful

There is a bit on it later, actually . . .

How Computers Handle Numbers – p. 17/??

C++ (Latest Standard)

C++ is schizophrenic about C
Is it a separate language?
Is it a language extension?
No, it’s %deity alone knows what

C++11 inherits most of C99, not C90
I failed to get the inconsistencies fixed

C++ relies on C for its arithmetic etc.
So that area will be broken in the same way

• It’s actually worse – ask offline if wanted

How Computers Handle Numbers – p. 18/??

Exception Implementation

Modern FP hardware/software is very sick

C99 IEEE 754 requires flag–and–continue
Permits trapping to interrupt routine

But hardware interrupts are totally privileged
Fixups by kernel / library/compiler handshakes
Unlike in 1970s, not documented in architecture

Option/configuration--dependent bugs are legion
Can even crash systems from applications

How Computers Handle Numbers – p. 19/??

Complex Number Exceptions (1)

Not an easy problem, made worse by misdesign
Complex and real fundamentally incompatible

The real line is closed by two infinities
One at each end, obviously – i.e. like IEEE 754

The complex plane is closed by one infinity
A sort of enclosing circle, but a single point

Cartesian representation is all wrong for that

How Computers Handle Numbers – p. 20/??

Complex Number Exceptions (2)

IEEE 754 shows the problem very clearly
Consider division as an example

(A,B)/(C,D) =
(A*C+B*D,B*C--A*D)/(C*C+D*D)

Blows up in almost any arithmetic when:

abs (C,D) >
√
maxreal

So we need something a bit fancier

How Computers Handle Numbers – p. 21/??

Complex Number Exceptions (3)

A better (but not perfect) approach is:

if abs(C) > abs(D) :

r = D/C;

(A,B)/(C,D) = (A+B*r,B--A*r) / (C+D*r)

else :

r = C/D;

(A,B)/(C,D) = (A*r+B,B*r--A)/(C*r+D)

That gets it right, except near infinity

How Computers Handle Numbers – p. 22/??

Complex Number Exceptions (4)

X = 1.0e308, N = 0.0, 0.1, 0.2, 0.3, ...
Calculate (X,X)/(X,N*X)

N=0.0...0.7 ⇒ (1.0,1.0) . . . (1.14,0.20)
N=0.8 ⇒ (+infinity,0.12) ⇐⇐⇐⇐⇐
N=0.9...1.2 ⇒ (NaN,0.0)
N=1.3...1.7 ⇒ (0.0,0.0) ⇐⇐⇐⇐⇐
N=1.8... ⇒ (NaN,NaN)

C99 Annex G example code is even worse

How Computers Handle Numbers – p. 23/??

General C99 Nightmares

Wording is ambiguous and inconsistent
Footnotes/optional wording overrides main text
No agreement even on the intent in SC22WG14

Perhaps 1–2 full implementations after 12 years
Developers/customers still often specify C90

long was longest integer type –-- now isn’t
Breaks most portable C90 code, subtly
Implications and details rarely understood

How Computers Handle Numbers – p. 24/??

C99/IEEE Nightmares (1)

<math.h> may set either errno or IEEE flags
All but <math.h>/<fenv.h> may set spuriously
Error values may be anything –-- 0.0, 42.0, NaN
Only implementation--defined value, anyway
Makes portable error detection a nightmare

Mode setting is disaster –-- but you don’t want it
Can’t even call standard library or return
Don’t even think about setjmp/ longjmp/signal

How Computers Handle Numbers – p. 25/??

C99/IEEE Nightmares (2)

IEEE 754 only if ------STDC---IEC---559------ is set

Nobody knows what ‘IEEE’ features do if not
Or what FP---CONTRACT ON means if it is set

Or if CX---LIMITED---RANGE ON means anything

Flags also need pragma FENV---ACCESS ON

Totally incompatible with optimisation
Flags corrupted by library, just like errno
Compilers will probably just get them wrong

How Computers Handle Numbers – p. 26/??

C99/IEEE Nightmares (3)

Many REQUIRED ways to lose NaN values
Contradicts IEEE 754’s stated intent (6.2)

fmax(1.23,NaN) = 1.23
atan(±0.0,±0.0) returns –π,--0.0, +0.0 or +π
pow(--1,±infinity) returns 1.0
Simply comparing values is ambiguous
And so on, ad nauseam

The sign of NaNs is meaningful (e.g. copysign)
But they don’t actually contain any meaning!

How Computers Handle Numbers – p. 27/??

C99/IEEE Annex G (1)

Complex infinity/NaN totally broken

A = (1.0,0.0)/0.0 = (+inf,NaN) = infinity
A, A+A, A*A must be infinities

A*(+inf) + A*(I*NaN) must be a NaN

A+(--1.0,0.0)*A must be either infinity OR NaN

double d = (INFINITY+I*0.0)*(1.0+I*0.0)

double e = (NAN+I*NAN)*(NAN+I*NAN)

... d,e are undefined (may be anything)

How Computers Handle Numbers – p. 28/??

C99/IEEE Annex G (2)

Complex arithmetic may set flags spuriously
<complex.h> need not set & may corrupt errno

CX---LIMITED---RANGE OFF may be very slow

Is misimplemented under some systems

Math. functions defined to lose NaNs/ infs
Depending on explicitly undefined behaviour

Division already mentioned – see also:

http: / /www.softintegration.com/docs/...
whitepaper/ j---ddj.pdf

How Computers Handle Numbers – p. 29/??

	This Is Now ``Later''
	More on Shifts
	What Languages Do
	More on Signed/Unsigned
	C/C++ Signed/Unsigned (1)
	C/C++ Signed/Unsigned (2)
	More on IEEE Signed NaNs
	IEEE and Decimal (1)
	IEEE and Decimal (2)
	Decimal Cohorts
	IEEE 754 Rounding Modes
	Exception Handling Design
	Fortran and IEEE Exceptions (1)
	Fortran and IEEE Exceptions (2)
	Fortran and IEEE Exceptions (3)
	C99 and IEEE Exceptions
	C++ (Latest Standard)
	Exception Implementation
	Complex Number Exceptions (1)
	Complex Number Exceptions (2)
	Complex Number Exceptions (3)
	Complex Number Exceptions (4)
	General C99 Nightmares
	C99/IEEE Nightmares (1)
	C99/IEEE Nightmares (2)
	C99/IEEE Nightmares (3)
	C99/IEEE Annex G (1)
	C99/IEEE Annex G (2)

