
Software Design and Development
Languages and Parallelism

N.M. Maclaren

nmm1@cam.ac.uk

October 2019

4.1 Introduction

5.1.1 Summary

Many issues are specific to particular programming languages (or classes of language)
or to models of parallelism, and this lecture includes a rough overview of the main ones.
Some of these are not taught in this MPhil, and included here for background, because
you may need to use them in your later career. There is one critical rule to follow when
selecting a language and parallelism model to use:

• Agree your choices together with your supervisor or Director of Studies, or both.

Your chosen project may have constraints, such as needing to start from a particular
program, and there may also be restrictions imposed by the examiners.

5.1.2 Other Courses

There are a lot of good courses and other references on the Web, but even more bad
ones. Some of the University Information Service’s courses may be useful to you, too.

By far the most common failing of most courses, Web references and even books is to
teach enough to get the reader into trouble but not enough to know how to avoid it or
get out. You may find some of my old courses useful, because they concentrate on the
latter aspects, and because some cover topics where there are few or no other courses on
the Web. They are all in:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/

The ones you are most relevant to you are Fortran, C++, MPI, OpenMP, but several others
may be useful.

4.2 Relevant Languages
The two main relevant languages are C++ and Fortran, with the former being the one

you will probably use for the MPhil. In both cases, you are strongly advised to use a
recent, but not too recent, version of the international (ISO) standard language, such as
C++03 or C++11 or Fortran 2003 or 2008. That will get you all the functionality you
need and minimise the problems you have with compilers.

Both the C++ and Fortran standards have introduced their own parallelism, and most
compilers now support them, though you sometimes need a specific version. C++ has
included a very low-level form of shared-memory threading, and Fortran has included

1

coarrays – a PGAS (Partitioned Global Array Storage) model – Intel already supports it,
in its cluster toolkit, and a version of gfortran does, too. You may well hear about UPC
(Unified Parallel C), but are recommended not to use it, for complicated reasons.

5.2.1 C++

• C++ is very flexible, but has very poor checking; errors are easy to make and extremely
hard to locate. Also compilers cannot optimise it very much, so you may have to do some
of that yourself.

However, it is dominant in many areas, and looks as if it will remain so for a while.
Unfortunately, I do not know of a good, introductory C++ course, other than the one
given in this MPhil, mainly because of the following problems:

• C++ is a huge and complicated language, with no simple, generally useful, subset.
• Books etc. rarely cover scientific computing requirements, and some things (like the

handling of multi-dimensional arrays) are very tricky.
• C (and hence C++) has lots of subtle ‘gotchas’ (i.e. complications that look as if they

do one thing but actually do another, sometimes only occasionally), which are usually
glossed over, but often cause trouble in real programs. The signed/unsigned minefield
mentioned earlier is just one example of many.

I used c. 100 programming languages before C++, and I was astounded at its complica-
tions and gotchas, but they do not make it correspondingly powerful, despite widespread
claims that they do. To become a competent programmer takes about 5 times as much
effort as doing so for Fortran.

You are advised to learn more advanced C++ from a book, and the following look fairly
good:

Stroustrup, B. (2008). Programming: principles and practice using C++.

This is 1100 pages, and is considerably more relevant and rather more thorough, but
is definitely not easy going. It should turn you into a competent but not expert C++
programmer, and estimates that using it to learn C++ from scratch will take about 14
weeks at 15 hours per week! I taught a course using it as a basis:

Programming in Modern C++
https://www-internal.lsc.phy.cam.ac.uk/nmm1/C++/

Eckel, Bruce (2000, 2003). Thinking in C++, 2nd ed.
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

There are two volumes: Introduction to Standard C++ (800 pages) and Practical Pro-
gramming (500 pages). Note that it still has the restrictions mentioned above, though not
as badly as most books on C++.

5.2.2 C++ and Parallelism

Above all don’t try to be clever, to avoid being bitten by the complications mentioned
above – KISS is the critical rule. The main other problem is the compiler generating

2

implicit calls to copy constructors and assignment. Do not underestimate how complicated
and full of gotchas this aspect of C++ is.

Most simple uses of MPI are no problem, but see the lectures More on Point-to-Point,
Miscellaneous Guidelines and (if used) One-sided Communication in:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/

The ones you are most relevant to you are Fortran, C++, MPI, OpenMP, but several others
may be useful.

4.3 Relevant Languages
The two main relevant languages are C++ and Fortran, with the former being the one

you will probably use for the MPhil. In both cases, you are strongly advised to use a
recent, but not too recent, version of the international (ISO) standard language, such as
C++03 or C++11 or Fortran 2003 or 2008. That will get you all the functionality you
need and minimise the problems you have with compilers.

Both the C++ and Fortran standards have introduced their own parallelism, and most
compilers now support them, though you sometimes need a specific version. C++ has
included a very low-level form of shared-memory threading, and Fortran has included
coarrays – a PGAS (Partitioned Global Array Storage) model – Intel already supports it,
in its cluster toolkit, and a version of gfortran does, too. You may well hear about UPC
(Unified Parallel C), but are recommended not to use it, for complicated reasons.

5.3.1 C++

• C++ is very flexible, but has very poor checking; errors are easy to make and extremely
hard to locate. Also compilers cannot optimise it very much, so you may have to do some
of that yourself.

However, it is dominant in many areas, and looks as if it will remain so for a while.
Unfortunately, I do not know of a good, introductory C++ course, other than the one
given in this MPhil, mainly because of the following problems:

• C++ is a huge and complicated language, with no simple, generally useful, subset.
• Books etc. rarely cover scientific computing requirements, and some things (like the

handling of multi-dimensional arrays) are very tricky.
• C (and hence C++) has lots of subtle ‘gotchas’ (i.e. complications that look as if they

do one thing but actually do another, sometimes only occasionally), which are usually
glossed over, but often cause trouble in real programs. The signed/unsigned minefield
mentioned earlier is just one example of many.

I used c. 100 programming languages before C++, and I was astounded at its complica-
tions and gotchas, but they do not make it correspondingly powerful, despite widespread
claims that they do. To become a competent programmer takes about 5 times as much
effort as doing so for Fortran.

You are advised to learn more advanced C++ from a book, and the following look fairly
good:

3

Stroustrup, B. (2008). Programming: principles and practice using C++.

This is 1100 pages, and is considerably more relevant and rather more thorough, but
is definitely not easy going. It should turn you into a competent but not expert C++
programmer, and estimates that using it to learn C++ from scratch will take about 14
weeks at 15 hours per week! I taught a course using it as a basis:

Programming in Modern C++

Many people use threading in C++, but it is very hard indeed to use correctly, and I
do not generally advise it. The worst problem is that the container library is not well-
defined for such use; this problem appliess to OpenMP, all forms of threading and all forms
of asynchronism, including those ‘defined’ in the ISO standards. There are some safe but
restrictive empirical rules that will work under most circumstances. For some guidelines,
see the lecture Critical Guidelines in:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/OpenMP/paper 7.pdf

the same rules apply to all forms of threading.

Beyond that, it is actually safer to write your own classes, unless you can find a suitable
class library that is guaranteed to be thread safe by someone that knows the C++ standard
and parallelism very well indeed.

5.3.2 Fortran

• With Fortran, you are advised to use the modern language; Fortran 95 is much more
powerful than Fortran 77, and has much better checking and optimisability.

All valid Fortran 77 is also valid Fortran 95 code, so using existing programs and libraries
is not a problem. The following course may be relevant, and the first lecture gives several
recommended books:

Introduction to Modern Fortran
https://www-internal.lsc.phy.cam.ac.uk/nmm1/Fortran/

Either following that or using one of the references should turn you into a competent
but not expert modern Fortran programmer for about 40 hours’ work (20% of that for
C++!) You should allow another 5–10 hours if you need to be able to work with older
code. There are a great many books on Fortran 77, but you are not advised to use that,
both because the modern language is better and because many of the Fortran 77 books
are very bad indeed!

Using parallelism and asynchronism in Fortran is generally not a problem, except for
one aspect (where it is still easier than C++). Fortran also optimises more easily (and
often more effectively) for OpenMP, SSE, VMX, Altivec etc.; it has been the language of
choice for SIMD parallelism for over 30 years!

Fortran allows compilers to copy data and sometimes requires it, even when the user does
not specify it, essentially like C++ copy constructors etc., but more cleanly. Fortran 2003
allows you to stop this by putting the ASYNCHRONOUS attribute on the relevant argu-
ments; MPI 3 uses that correctly, but unfortunately is not yet generally available. There
are several ways round the problem, but the simplest is to use the ASYNCHRONOUS
attribute when you need to.

4

5.3.3 Parallel and Auxiliary Languages

There are several parallel languages that extend existing serial languages, and are im-
portant in scientific computing. The main GPU interfaces are both like that: CUDA,
OpenCL abd OpenAcc. There are also shared-memory languages, of which the leader is
OpenMP, which has C, C++ and Fortran forms. There are also dozens of specialist par-
allel languages around, of which few have had any impact outside computer science (and
often not much in that).

C is a high-level assembler, and you should treat it as such – it is not recommended for
writing applications in, but you will probably need to use it for interfaces, including system
calls. It can be called from both C++ and Fortran. You are very strongly advised to
use either the 1990 or 1999 version of the ISO standard language (C90 or C99), because
the IT industry has essentially rejected the later ones.

Matlab (and its GNU equivalent, octave) and Python/numpy are very useful for quick
test codes, and you can also use them to write prototype programs. You should use
Mathematica or Perl only if you know them well, because they are harder to use equivalents
of Matlab and Python. And hundreds of other languages exist! For a comparison of some
of the ones mentioned, see:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/WhyFortran/

Python is also a very useful scripting language, including for converting data from one
form to another. You are strongly advised to learn it unless you already know Perl well.

5.3.4 Mixed-Language Applications

Applications that use more than one language can be written, but there are only two
relatively easy cases.

• Calling C and simple C libraries, especially from C++ or Fortran.

Almost every language can do that, in some way, and it is the way that most languages
access the system facilities and implement libraries like CUDA and MPI.

• Calling Fortran from C or C++, using the Fortran 77 subset for at least the interface.

You can still use a Fortran 95 compiler for this, and (with some provisos) the code can
be in Fortran 95, but the interface cannot use any of the new facilities. An example of
this is LAPACK.

Using both C++ and Fortran 95 in one program can be tricky, because their memory
management and a few other facilities can interfere with one another. However, if you
avoid using Fortran’s memory management in advanced ways (which is usually possible),
it is usually feasible; C++’s memory managment is generally not avoidable, and rather
more delicate. There is some very dated information in:

Mixed Language Linking
https://www-internal.lsc.phy.cam.ac.uk/nmm1/MixedLang/

Most of that is still true, but quite a lot has been superseded, because there are now
better ways to do the same task. If you do need to mix C++ and Fortran, a better
approach is to use separate processes; you can still build them into a single application,

5

but the process interface is much cleaner in most modern systems. This is far beyond
the scope of this course, so this information is for background only; there is some more
information in:

Building Applications out of Several Programs
https://www-internal.lsc.phy.cam.ac.uk/nmm1/MultiApplics/

Processes can still share memory on SMP systems, by using POSIX mmap or some form
of shmem, but remember that explicit synchronisation is needed.

5.3.5 Relevant Libraries

MPI is a library-based interface; OpenMPI and MPICH are the two open-source ver-
sions, and Intel and most HPC vendors have their own.

NAG is the best general, portable numerical library, and is the most reliable source of
numerical algorithms. LAPACK is open source linear algebra code of very high quality.
FFTW is open source fast Fourier transforms. MKL and ACML are Intel’s and AMD’s
mathematical libraries, and will deliver the best performance. And there are a great many
more, both proprietary and open source.

• Do NOT trust Numerical Recipes or the Web.

The former is like the Curate’s Egg†; an expert can tell which parts are good and
which are bad, but an expert will not use it, anyway. The Web is not called the Web of
a Million Lies for nothing, and that is an underestimate; there is some extremely good
information on it – and considerably more that looks accurate but is seriously wrong. The
site http://www.netlib.org is often reliable, but not always; it is quite a good place to
look, but take care.

A few libraries should not be included on other grounds, though you are very unlikely to
want to use most of them. They are mainly ones that use system facilities in fancy ways,
and they may be incompatible with MPI and OpenMP, at least, and possibly GPUs. A
specific warning is to avoid anything using the X Windowing System or other GUI interface
in a parallel program, because the event handling may well interfere badly. If you need to
do that, a much better approach is to use separate processes, just as when mixing C++
and Fortran 95 and described in the course Building Applications out of Several Programs.

Algorithm references are a bit of a problem. Data management and related ones are
well covered in computer science books, such as:

Cormen, T.H. et al. Introduction to Algorithms
Knuth,D.E. The Art Of Computer Programming

There are a great many other good computer science ones, including by Sedgewick,
Ralston, Aho et al. etc., but most reasonably simple good, general numerical ones are
very old. The best approach is often to use the NAG library as a reference:

http://www.nag.co.uk/numeric/FL/FLdocumentation.asp

† An old joke from Punch; look up “Curate’s Egg” in Wikipedia.

6

For specialist algorithms, there is little option but to look for an expert in that particular
field – note that I am referring to the mathematical field of the algorithm, rather than the
scientific field of the problem. The latter is often a good start.

4.4 Survey of Parallelism

5.4.1 Why Use Parallelism

Moore’s Law is that the chip size (strictly, number of transistors per square millimetre)
goes up at 40% per annum; this is often misquoted in a form that I call Not-Moore’s
Law, which is is that CPU clock rates do, too. Moore’s Law is slowing down but has not
stopped yet, but Not-Moore’s held only until ≈2003 and then broke down. Clock rates
now are the same speed as they were then, and there is little prospect of any change. The
reason is the power consumption (i.e. watts) due to leakage, which is beyond this course,
but see:

http://www.spectrum.ieee.org/apr08/6106

Watts

1993 20081996 1999 2002 2005

Power Consumption of CPUs

80

40

This graph is

indicative, and

shouldn’t be

trusted very far!

120

160

Figure 4.1

7

Clock Rate of CPUs

GHz

1993 20081996 1999 2002 2005

This graph is

indicative, and

shouldn’t be

trusted very far!

3

4

2

1

Figure 4.2

The manufacturers’ solution has been to use Moore’s Law to increase the number of
cores, so the total performance still increases at nearly 40% per annum, though even that
is now slowing down. Specialist CPUs already have lots of cores, and are used in areas like
High Performance Computing, video processing and telecommunications, but are currently
irrelevant to “general” computing. However, we are interested in HPC, and the following
is an indication of how many cores per chip were planned:

2009 typically 4 cores
2014 typically 16–32 cores
2019 typically 128 cores

The figures have slipped a bit, mainly for the ‘commodity’ CPUs, but a typical high-end
desktop now has 16 cores and more in its GPU.

5.4.2 Types of Parallelism

There are hundreds of parallelism models, some purely theoretical, but most with some
practical use, but only a few are relevant to this MPhil. The main ones are:

• Message passing, which is currently mainly MPI.

This is the main form for distributed memory (i.e. clusters), but also works well on
multi-core, shared-memory systems. The model is that each process executes serially and
semi-independently, with communication using I/O-like mechanisms. There is another
course on this.

• Small vector units, currently mainly SSE.

These will be described in a moment. Pure vector supercomputers (i.e. ones with large
vector units) are essentially dead.

• Attached SIMD units, currently mainly GPUs.

SIMD is Single Instruction, Multiple Data. There is another course on GPUs.

• Shared memory threading, currently mainly OpenMP.

8

This is effective only on multi-core systems, but those are starting to become widespread.
The latest version of the C++ standard supports a form of this, and it also includes POSIX,
Microsoft and Java threads. CilkPlus also belongs here, as do several others.

• PGAS (Partitioned Global Array Storage).

In many ways, such designs are intermediate between message passing and and shared
memory threading. The latest version of the Fortran standard has coarrays; UPC (Unified
Parallel C) is very trendy, but not advised.

I will start with some important special cases. It is important to note that this is not
the only way to use them, but it is the simplest way to design and debug programs using
them. It is probably the way that most people will code their programs, but there are
many other approaches. I will then go onto more general parallel models.

Small vector units (SSE, AVX, Altivec etc.) are used as part of serial optimisation;
they are tricky to use efficiently in parallel with either MPI or GPUs, though their use
can be alternated with few problems. You need a suitable compiler and a high level of
optimisation; typically one of Intel’s compilers and -O3. You need to make your inner
loops vectorisable (as for OpenMP), and you can check that using the compiler messages.
That is more-or-less all you need to know for simple use; for advanced tuning, check the
actual times and possibly use the (hardware) performance registers.

An increasing number of people are using toolkits, usually libraries but sometimes pre-
processors. Almost all are field- or model-specific, and they vary from good to utterly
ghastly, as you would expect. Most require shared-memory, but some based on MPI. If a
good one matches your requirement, especially if it is used by people you will be working
with, then it saves a great deal of effort to use it. Such toolkits have not been investigated
and are not covered in this course.

5.4.3 Parallelism References

It is very hard to give useful general references, because they all depend on your precise
requirements and constraints. This lecture was partly derived from another course that
has more information about parallelism:

Parallel Programming: Options and Design
https://www-internal.lsc.phy.cam.ac.uk/nmm1/Parallel/

There are a lot of fairly good books around on parallelism, including a few of the
computer science textbooks, but most describe a few approaches and give the impression
that those are the only ones to consider. There is a very relevant quote by Rudyard
Kipling from In the Neolithic Age:

There are nine and sixty ways of constructing tribal lays,
And every single one of them is right!

Note that this is frequently misquoted on the Web, and it is not safe to trust the Web
on the choice of programming languages or parallelism, either.

This lecture is partly taken from a much longer course, which is dated but still relevant,
and goes into much more detail:

9

https://www-internal.lsc.phy.cam.ac.uk/nmm1/Parallel

Shared-memory programmers (not just Java ones) should also look at
http://docs.oracle.com/javase/tutorial//essential/concurrency/

My guidelines (mainly for OpenMP but more general) are in:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/OpenMP/paper 7.pdf

You are also strongly recommended to look at this link:
http://parlang.pbworks.com/f/programmability.pdf .

Ignore the details, which are misleading out of context, but note its summaries. Its asso-
ciated book has quite a good overview of options, and goes into details I do not (except
for dataflow):

Eckel, Bruce (2000, 2003). Thinking in C++, 2nd ed.
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

There are two volumes: Introduction to Standard C++ (800 pages) and Practical Pro-
gramming (500 pages). Note that it still has the restrictions mentioned above, though not
as badly as most books on C++.

5.4.4 Key Factors

Distributed-memory parallelism (i.e. over more than a single node) needs MPI, PGAS
or one of a few specialist interfaces. You can also use MPI between nodes, and other ways
(e.g. OpenMP) inside. This lecture is going to assume MPI, but not describe it, as you
have another course on it.

Shared memory parallelism is easy to program, but hard to debug, but can add to serial
programs, incrementally, and that is how my course teaches it. However, many people try
it, fail to debug or tune it and use MPI instead, because MPI works very well on multiple
cores within a single node.

All of MPI, PGAS and GPUs need the programmer to manage the data distribution,
and the that must be designed into the program - it cannot easily be added later.

For information on GPUs, see the course Scientific Programming with GPUs. This
course describes only how to mix GPUs with MPI, and that will also be covered in the
GPU course. Note that, to some extent, this also applies to mixing SSE and MPI, as well
as SSE and GPUs and, under some circumstances, OpenMP.

5.4.5 MPI, GPUs and SSE

• Encapsulate your GPU or SSE use in algorithms.

This is so that you can debug and tune those on their own, as much as possible; you
should design and test their interfaces in usual way. For example, such algorithm could
be a parallel transpose using MPI, or one step of a linear solver using a GPU; that is not
a complete algorithm, but is a subsidiary one with a well-defined interface. You can then
call these from an MPI process, so a MPI program can also use GPUs and SSE. You can

10

then design and test these algorithms’ interfaces in usual way, and do not need to worry
about interactions just yet.

• Use the MPI process as a controller of the GPUs etc.

The simplest approach is to use the MPI process as a controller of the GPUs (and SSE).
You must not share GPUs between processes; this is not normally allowed but, even if it
is, it is very hard to tune. It is easiest not to overlap MPI calls and other uses, though
you can alternate MPI calls, GPU use and SSE use. You should consider separating by
suitable barriers, to simplify debugging and tuning.

You could also use OpenMP or threading instead of MPI, on a single shared-memory
system, but use it only as a controller of the program. Again, do not share GPUs between
threads, and do not mix OpenMP or threading and MPI. The reasons for these recom-
mendations are too complicated and messy to go into, but they include arcane details of
the MPI progress model and system scheduling.

An example of the easiest design may be useful:

start: Use MPI to initialise
[Consider calling MPI Barrier]

loop: Use GPUs to do calculation
Use SSE to do calculation
Use GPUs to do calculation
Use SSE to do calculation
[Consider calling MPI Barrier]
Use MPI to synchronise data
[Consider calling MPI Barrier]
Repeat from loop

stop: Use MPI to finalise

You can add suitable barriers between the GPUs and SSE usages if it helps, though
calling MPI Barrier will not help. And, of course, every reasonable variation on that
design is worth considering – obviously, few people will use MPI, GPUs and SSE! There
is a little more on asynchronous use later.

5.4.6 Shared Memory Parallelism

Many people use one MPI process per core, which has the advantage that the same code
runs on both multi-core systems and clusters.

Currently, almost the only alternative is OpenMP. Sometimes, using OpenMP is easy
and efficient; at others, it is evil to debug and tune. There is only one simple use: calling
an existing threaded library. Such libraries include the NAG SMP library, Intel’s MKL and
AMD’s ACML. This use is most effective when the time is dominated by a few calculations,
and some library already has a SMP solver for them; you can then just call it, and your
problem is solved!

• You can call such code from MPI but, in that case, use one MPI process per system
and leave it to the SMP library to use all of the cores.

11

This is a critical point, as using both multiple MPI processes per system and an SMP
library is extremely advanced use, and needs both programmer and administrator skills.
You can alternate calls to an SMP library with using GPUs, as described above for GPUs
and SSE, at least when you have only one GPU per system. As with that, each type of
use can be debugged and tuned separately.

Combining MPI and OpenMP is possible, but is definitely advanced use and is not
generally recommended; as with using SMP libraries, you should use one MPI process per
system.

You are not advised to use POSIX or Microsoft threads, but the reasons are considerably
outside this course, and foul almost beyond belief. You are not advised to use C++11
threads, either, because they are not realistically usable by any normal person, at all safely.

4.5 Parallelism Models
This considers how you structure your application for parallelism, and it is largely

independent of the parallel technology - e.g. you can do anything in either MPI or OpenMP.
The model you use changes how you approach your problem, especially as regards its design
and debugging. This lecture only summarises the main issues, and is merely intended to
point you in the right direction – you will have to do further study to learn how to use the
techniques effectively.

5.5.1 Farmable Problems

I shall describe farmable problems first, to get them out of the way. These are when
the requirement is divided into independent tasks; it is fairly common, and very easy to
parallelise. Common examples include:

• Parameter space searching.

This is finding the best choice of parameters, and includes many forms of global optimi-
sation – any such problem where brute force is effectively the only solution. Brute force
should be avoided whenever possible, but sometimes it is unavoidable.

• Monte-Carlo simulation.

Parallelism means that you get a bigger sample, faster, which improves the accuracy.
When doing this, remember to change the random number sequence between each simula-
tion! It is also a good idea to check for possible dependence between the sequences, but
that topic is again outside this course.

The simplest approach to these is to code a task as a simple, serial program – you can
then debug and test it as an ordinary, serial program, using an ordinary, serial debugger
if you want to.

• Then wrap it up in a a parallel harness.

The harness simply runs the program N times, giving it a separate task to perform
each time. Remember to keep the original serial form in case you hit a new problem.
Sometimes, you need make no changes whatsoever to the serial program, and you usually
need to make only a very few, localised changes. It is very easy to do.

12

• Parallelise using processes and not threads.

Using processes looks more complicated, but is actually easier, mainly because the
problems are far better understood. You should normally use pipes or files for input and
output, and most program changes will be to do this. The controller (or harness) creates
the serial program’s input and merges its output, and all of the code to handle parallelism
is in the controller.

5.5.2 Basic Master-Worker Design

The parent application runs as controller, and manages several jobs in parallel. Each
task gets a CPU from a pool when one becomes free. The controller’s tasks are to:

• Create a suitable job to run the task
• Create suitable input
• Run the job and wait until it finishes
• Collect its output and store or analyse it

It may run multiple jobs at once and, after it has finished a job, may run further jobs,
perhaps indefinitely. There are a great many ways in which this can be done, and many
are often almost trivial. Examples of easy implementations include:

• Using a batch scheduler to run serial jobs

This is essentially just a general-purpose controller written and debugged by someone
else. It is usually best to script the submission and collation of the results, to save effort,
and it is generally the most flexible and easiest solution.

• Writing a controller using MPI.

This is partially covered in my MPI course and is probably the easiest practical use of
MPI. It requires MPI to be installed, of course.

• Writing a simple controller in Python.

This is a little harder to do, but not very much, especially for a single multi-core system;
on clusters, it requires being able to run commands on remote systems.

There are some common bad solutions that are quite strongly not recommended:

+ Writing a controller in Perl, C or C++.

This is a significantly harder task, and there is some details of why in the extra infor-
mation in the course Building Applications out of Several Programs.

+ Writing a controller as a shell script.

Shell scripts are unsuitable for any non-trivial task, as it is almost impossible to imple-
ment any useful level of error handling.

+ Writing a controller using OpenMP or threads.

This is easy until something goes wrong, when chaos ensues. One thread can compro-
mise others too easily, there is far too much changeable state per process, and there is no
clean way to kill a stuck thread.

5.5.3 Obtaining Parallelism

13

In general you have to introduce parallelism into your program, by diving it up into
tasks, and that needs communication between the tasks. The first rule is to use the most
natural design (i.e. the one that fits the mathematics of your program most closely), and
the second rule is to choose the one with least communication. These rules maximise
debuggability and help tunability.

• Do not rush towards the coding!

Careful design is essential for success, more here than in almost any other aspect of
programming. If you are uncertain where the time goes in your program, and how much
interaction between tasks would be needed, consider running a prototype to get timing
and communication data.

You also need to consider the consequences of Amdahl’s Law. Let us assume that the
program takes time T on one core, and spends a proportion P of its time in parallelisable
code. Then the theoretical minimum time on N cores is:

T ∗ (1− P ∗ (N −−1)/N)

This means that you cannot ever reduce the time below T ∗ (1−P) and the gain drops
off very rapidly above 1/(1 − P) cores. You should use this to decide how many cores
are worth using, which in turn can affect whether to use multi-core systems or clusters –
and, in some cases, whether the project is worthwhile at all. But you also need to note a
practical warning, which someone quoted in this form on the net:

The difference between theory and practice
Is less in theory than it is in practice.

Amdahl’s Law is a theoretical limit and, in practice, parallelism introduces inefficiency
– especially if the parallelism is fine-grained, or there is frequent communication between
threads.

• Allow at least a factor of 2 for overheads.

This means that you usually need a potential gain of 4 to be worth the effort of paral-
lelising a program, and at least 8–16 if your program need to be redesigned to introduce
parallelism (i.e. more than simply changing one algorithm for a more parallelisable one).
You can save a lot of time by doing rough calculations first, and avoiding approaches that
cannot be made to work.

5.5.4 Practical Parallelism

A very non-theoretical point is that parallelism for performance (usually called HPC
– High Performance Computing) uses a SPMD model (Single Program, Multiple Data).
Exactly the same program runs on all cores (or systems, on clusters) are allowed to have
data-dependent logic, so each thread (or process) may execute different code.

The simplest is master-worker, which has already been covered, but it can be extended
to lock-free SPMD, and still remains reasonably easy to debug. That is a very ill-defined
term, but here is roughly what it means. Workers communicate only with the master, or
by atomic access to global variables, which are often implemented by a call to the master,
anyway! This includes using reductions in MPI, OpenMP and similar interfaces.

14

• The key is to avoid any execution-order dependencies (except as controlled by the
master).

This includes logic where one worker has to wait for another to finish a task and,
especially, workers never take out a lock on access to any data, which is why it is called
lock-free. If you think about it, this is not very logical, as you can get exactly the same
problems with sufficiently complicated communication with the master, but the point is
that this centralises and encapsulates the problems.

• In practice, HPC implies gang scheduling.

This is when all cores operate together, in a semi-synchronised fashion; the details of
how systems arrange this are very complicated and outside the scope of this course, but it
is usually fairly easy provided that the system is not being used for any other purpose at
the time you are running your program. There is no theoretical reason for this, but it is
so today; whether it will be true in some years time is less clear.

• Do not try to use dynamic core counts.

This is when the number of cores (i.e. active threads or processes) varies during the
execution of a single program. You may see facilities to support this, and possibly some
recommendations to use it, but it is best called an open research problem in computer
science – i.e. nobody is sure how to make it work, in general.

5.5.5 Asynchronism

• You can overlap communication and computation but, unfortunately, this is much
more in theory than in practice.

The main reason is that synchronism at any level (and that includes in the operating
system and even hardware) ‘poisons’ asynchronism and makes it effectively synchronous.
This aspect is closely related to MPI’s concept of progress, but that is too complicated
to cover either here or in the MPI course; it is covered in extra information for the MPI
course.

A specific point is that the network operates independently of the CPUs on the systems
attached to it, but the TCP/IP protocol is synchronous and needs a CPU to handle data.
Ethernet itself is similar, but is becoming less so (e.g. 100 Mbit ‘Fast Ethernet’ was entirely
synchronous, but Gbit Ethernet is only partly so). InfiniBand (used on specialist HPC
clusters) is much more asynchronous, but its drivers are often synchronous.

• However, modern CPUs are almost all multi-core, so we can reserve some cores for
communication.

This is very often worthwhile, and it is common to get faster times by using only some
of the cores on a multi-core system; try varying the number and seeing what happens.
Also GPUs can usually execute independently of the CPU; if their program is using only
their own memory, there is no problem.

• The memory controller is usually a bottleneck.

Most apparently CPU-bound codes are actually memory- bound, though this can be
due to limited bandwidth, the finite latency or conflict between accesses – the situation is

15

too complicated to describe here. Many books and Web pages get this one wrong, and
some of them describe what used to be the situation, but is not how modern systems are
designed. This is simplest to show in figures:

Older Systems

Main memory

Network

Card

Interface
Cache

SIMD
Unit

CPU

Figure 5.1

Current Systems

Unit

Main memory

Memory Controller

Network

Card
Interface

CPU CPU
SIMD

Cache

Figure 5.2

• Do not rush into coding asynchronous programs.

They can be a great deal harder to debug, though careful design is the key to success,
as usual. The old mainframes were much more asynchronous than modern systems, and
the relevant skills were more widespread, but it was regarded as difficult, even then.

• GPUs are the best bet for making this work.

This applies especially to GPUs and MPI communication, but do watch out, as the
situation is complicated. Remember that the memory controller is a bottleneck, and all
of transfer to and from the GPUs, the CPU and the network need it. Overlapping memory
access often causes conflict, and problems with that can be very hard to track down.

16

5.5.6 HPC Models

Sometimes the problem has a natural model of parallelism, arising out of either the
basic science or the algorithm used. If there is a suitable implementation of some parallel
mechanism that provides that model, then use it. If not, you must map the natural model
to another parallel model.

• This is too complicated an area for this course.

I will describe three of the most important HPC models, which are the only ones that I
have seen used in production code; there are almost others in use, but these are probably
the most common. There are some more details on this in the MPI course. But, as
always, remember that careful design is critical.

5.5.7 The Vector/Matrix/SIMD Model

This is the basis of Matlab, Fortran 90 and so on, and is where the basic primitives are
matrix operations like mat1 = mat2 + mat3*mat4. Typically, it assumes that the vectors
and matrices are very large. This is very close to the mathematics of many areas, and
often highly parallelisable – I have seen 99.5% in a real program.

• The main problem arises with access to memory.

Vector hardware had truly massive bandwidth compared with its CPU performance,
and all locations were equally accessible. That is completely unlike the situation with
modern cache-based, SMP CPUs.

• Main memory has affinity to a particular CPU.

Only local accesses are fast, and memory conflict is bad; this is why LAPACK and other
high-quality libraries use blocking algorithms. Unfortunately, some vector codes run like
drains even if they do use blocking algorithms.

• Regard tuning this model as all about memory access.

On a modern system, the CPU can be regarded as infinitely fast compared to access to
main memory; a typical ratio between the time for a double precision multiplication and
a main memory access is 1:100. To a great extent, the same applies to using MPI and to
some extent GPUs, and the main cost is for the non-local accesses. The hardest part of
the design is minimising those.

5.5.8 Problem Partioning

This is not really a specific parallel model, but more a class of such models. It is based
around the idea of dividing the problem up into sections, and assigning each section to a
thread. There are three main objectives:

• KISS – keep it simple and stupid.

• Equalise the CPU requirements for each thread, so that each runs for about the same
length of time.

• Minimise communication between threads, especially when one thread has to wait
for others before proceeding.

17

Sometimes, partioning is natural and easy, and may arise directly from the scientific
problem. For example, separating by component in a motor, or by compound in a com-
posite material, or by species in a ecological simulation. You may need to group tasks
together if you have more tasks than threads, and you should use the objectives described
above when doing that.

B

C

E

B

B

B

B

C

C

C

CC

E

E

E

CD

D

D D

D

D

D
D

Graph Partitioning
A AA

AA

Figure 5.3

The partioning is very often done using spatial dimensions, and the simplest use is a
rectangular grid. You can assign indices by blocks or cyclicly; the former is more common.

A A A A

A A A A

A

A

A

A

A A

A

B

B

B

B

B

B

B

B

B

B

F

A

BB

B B B B

C C C C

C C C C

C

C

C

C

C C

C C

D D D D

DDDD

D

D

D D D

DDD

E

E

E

E

E E E

E E E

E

E

E

E

E

E

F

F

F

F

F

F

F

F F

F

F

F

F

F F

Block Partitioning

Figure 5.4

Unfortunately, it is common for some areas to take much longer than others (e.g. the
flow of a fluid round a point), and in others the communication is often non-uniform.

• Irregular divisions are often more efficient, but they are more tedious and more error-
prone to program. There are many different ways of doing this, including multi-grid
methods, mesh refinement and transforming the coordinates of the grid corners.

18

A A A A A

A A A A

A

A

A

A

A

A

A

A

A A A

A A

A

A

A A A

A

A

A

A

B

B

B

B

BBB B

BB BBB

B BBB

BB

B

B

B

B

B

B

B

B

B

B

B

CC

CC

CC

C

CC

C C C

C

C C

C

C

C

DD

D

D

D

D

D

D

D

E

E

E

E

H

G

F

E

Irregular Partitioning

Figure 5.5

A A A A

A A A A

A

A

A

A

A A

A

B

B

B

B

B

B

B

B

B

B

A

BB

B B B B

C C C C

C C C C

C

C

C

C

C C

C C

D D D D

DDDD

D

D

D D D

DDD

E

E

E

E

E E E

E E E

E

E

E

E

E

E

F

F

F

F

F

F

F

F

Mesh Refinement

G L

H M

J N

K O

Figure 5.6

D

F
GH

JKL

A

E

B

I

C

Transformed Mesh

Figure 5.7

19

There are also many forms of cyclic partitioning, and different forms can be nested or
combined in other ways, but the above are the most common. Partitioning can also be
done using Voronoi diagrams (a.k.a. Dirichlet tesselation, a.k.a. Delaunay triangulation),
which is mentioned in the MPI course and may be covered in the mesh generation one.

5.5.9 Dataflow Models

These can be useful for irregular problems, but it seems that some people find it easy
to ‘think dataflow’ and others find it very hard.

• If you find it an unnatural way of thinking, do not use it unless you have to, as you
will make too many errors.

The structure of the program is made up of actions on units of data, and defines how
these depend on each other. The data are filtered through the actions – it is very like
the object-oriented model in this respect. Actions run when all of their input is ready,
and input can get stacked up several deep on one path, while the action waits for another.
You can tag input with a ‘transaction tag’ if all of the different inputs to an action must
match each other.

OK OK

OK
OK

OK

OK

Solid means data are ready

Dashed means NO data are ready

Dataflow (Step N)

Figure 5.8

20

OK

OK

OK

OK

Input stacking up
x 2

OK

Dataflow (Step N+1)

Figure 5.9

The usual implementation is that each ‘data packet’ is stored in some queue, and is
associated with the action it is for – in the simple case being described here, each data
packet is assigned to a unique action, though that action can then pass it onto another
one.

• The program chooses the next action to run.

The way that it prioritises the data matters for efficiency, and most of the tuning of
dataflow models is concerned with this, but it is separate from correct operation (be-
cause any execution order will eventually complete). This is a gross over-simplification,
of course, but dataflow models are a complete subject in themselves.

• The approach can make the program’s design a lot simpler.

The reason is that there is no communication except by an action passing data packets
to other actions, and the only communication failures that can happen are deadlock and
livelock – erroneous results cannot arise because two actions run simultaneously. This
gives a much higher chance of successful debugging.

5.5.10 Designing for Distribution

A good rule of thumb is the following:

• Design for SIMD if it makes sense.

• Design for lock-free SPMD if possible.

• Design as independent, communicating processes otherwise.

That is for correctness – i.e. the order of increasing difficulty. It is not about perfor-
mance, and not about shared versus distributed memory. If you think you can design your
own structure, then you should be aware of the seminal paper on the topic: Communicating
Sequential Processes by C.A.R Hoare; see:

http://www.usingcsp.com/cspbook.pdf

21

I am referencing that paper mainly to put you off from being too clever – you are not
being recommended to read it – it is 260 pages long, and hard going even for mathe-
maticians. But that fact may explain why I keep stressing the need to keep your design
simple. Note that the order of increasing performance may be the converse to the order
given above: There Ain’t No Such Thing As A Free Lunch, especially in parallelism.

• The next stage is to design the data distribution.

SIMD is usually easy, because you just chop the data into sections, but other models
are trickier. The best approach is very dependent on the details of your problem.

• Then you work out the need for communication.

This is which threads need which data and when. At this point, you can usually do a
back of the envelope efficiency estimate; if this is too slow, then you need to redesign the
data distribution, and this is often the stage where simple SIMD models are rejected.

• Do not skimp on this design process, because data distribution is the key to success.

• You may need to use new data structures (compared to the serial code) and, of course,
different and more parallelisable algorithms.

• Above all, KISS – Keep It Simple and Stupid. Not doing that was the main failure
of ScaLAPACK, and is why most people find it very hard to use and worse to debug.

Annex: C++ Notes
I taught a course using Bjarne Stroustrup’s “Programming – Principles and Practice

Using C++ – which needed 200+ hours’ work. This annex is some points and additions
I made on important practical issues that are rarely mentioned, some of which are more
detail on points that he made. For the details, refer to my version of the course:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/C++

Some of them are also in his original:
http://www.stroustrup.com/Programming/

.

C++ has a large number of open modes, but many of them have serious gotchas. The
following are generally safe:

Open options Purpose

in for reading only
out|trunc write to a file, replacing it
out|app extend a file at the end
in|out update an existing file, starting with a read
in|out|ate update an existing file, starting by extending it
in|out|trunc update or create a file, starting with a write

ifstream includes in and ofstream includes out, and all can be used with or without
binary. The above is the only safe use of app.

Repositioning is also tricky, though rewinding is a lot safer, and you can seek only on
ordinary disk files, not on anything ‘special’, sometimes including remote files located on a
file server. You must never reposition or rewind a file if opened for app. The following
uses are generally safe:

22

Action Purpose

seek(0) to reread or overwrite from the start
seek(0,trunc) to clear the file and rewrite
seek(0,ate) to extend the file at end

You must separate reading and writing by a seek. You can seek by byte count safely
only if it is an ordinary disk file on a Unix-derived system, and it was opened with binary.

Some files are not just arrays of bytes. Some may be structured but, more often some
can be opened only once – be warned! FIFOs (sockets, TTYs, etc.) are like that, as are
many files on some non-Unix system. Simplex stream I/O is only reliable way of using
them: that is input-only or output-only, with no repositioning. Remote files (e.g. ones
on NFS etc.) also have restrictions. If they may be accessed in parallel, open them for
input-only. Use a library like HDF (or MPI I/O) if you need to update them.

When C++ gets an I/O error, it just sets a flag bit and ignores further calls on that
file until the program clears it; that is very dangerous, but better than C. But never use
clear() on the bad() bit; you can set up a stream to throw on bad errors, which is better;
see slide 21 of my course (slide 19 of his) 10 iostreams.odp. C is even worse, continues
regardless, and has no separation of recoverable and catastrophic errors. This leads to
undefined behaviour and chaos.

Under Unix-derived systems (including Microsoft ones), system errors on output are
rarely detected, and system errors on input often look like end of file. This area is com-
pletely broken in modern systems, and all you can do is to watch out and use files
defensively.

Many people dislike C++’s formatted I/O facilities, for good reason. C’s are easier to
use and more flexible but unsafe. There are several alternative approaches described in:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/C++/11a other io.odp

https://www-internal.lsc.phy.cam.ac.uk/nmm1/C++//24a more numerics.odp

I am going to mention only a few points here, mainly ones that are relevant to other
courses.

Those lectures say why I do not like the STL’s design much, describes a lot of gotchas
to avoid, and describes approaches that I regard as cleaner and simpler. Vastly the most
useful standard containers are <vector> and <list>, followed by <array>, <map> and
<set>. Do not bother with <valarray>, <stack> etc., which merely complicate your
code for no benefit; <algorithms> is not useful, either – code them yourself. Generally,
use <vector> unless need a fixed size, when you must use <array> – it is cleaner than
built-in C++ arrays, but no more functional.

Watch out for shared-memory parallelism; the standard is hopelessly ill-defined, but this
is the way it is interpreted. Separate container objects are independent, and information
methods are read-only on container. Separate elements are independent if left in place
(i.e. they may be updated but not replaced). In general, even element assignment may
update the whole container,the rules for iterators are full of serious gotchas, and the data
are not contiguous (i.e. unlike C). The exceptions are <vector>, <deque>, <array> and
<string>, where you can also replace elements (but not append them, insert or erase

23

them; because the data are contiguous), you can create a C pointer to the data, and pass
to MPI etc.

It is critical to use a pure data class (not a C++ term) when passing data to MPI,
binary I/O etc.; this is slightly stronger than a standard-layout class, and not quite the
same as as a POD. In simple terms, pure data classes must not contain any of:

Any reference or pointer, or
any container except <array>, or
any class except a pure data class, or
any virtual functions

There are also arcane restrictions on derived classes, and I suggest you avoid assum-
ing anything about those. Some standard classes are likely to be pure data classes, but
the area is too complicated to describe; the good news is that <complex>, <tuple> and
<bitset> are. <exception> is definitely not, despite appearances. Almost none of this
is actually specified.

Class layout is, in general, a can of worms. The alignment and padding may vary
considerably, according to hardware, system, compiler and compiler options; check this
carefully when reading in binary files. Be very careful when using any library class,
whether C++ or external (e.g. Boost), because their exact properties (including whether
they can be moved) are very rarely defined; e.g. what constraints are there on <mutex>?

C++ 2011 changed its base from C90 to C99. C90 required errno be set for errors
in math.h, and C99 broke that. The ‘replacement’ IEEE 754 error handling is solid with
gotchas, and is worse in C++. C++ 2011 included C99’s library calls but not its pragmas,
so using those library calls is necessarily undefined! Compilers, libraries and options will
all differ on their interpretation of this whole hopeless mess, so you need to check yourself,
as taught in the previous lecture.

For some information on precision and accuracy, look at exercises 1a, 1b and 1c in:
https://www-internal.lsc.phy.cam.ac.uk/nmm1/C++/15 graphing.odp

they show how to solve some common problems. There is a great deal more, including
information on Kahan summation, precision extension etc., in:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/C++/Exercises/Chapter 24

My high-precision
accumulator code is there, and you are welcome to use it (e.g. on GPUs).

Almost all of the Web and most books are erroneous on random numbers. Simple rules
include not to use rand() in serious code, because it is truly awful, Numerical Recipes and
Boost::random are unreliable, and C++ 2011 supersedes the latter, anyway. In C++,
only the Ranlux and Mersenne genererators are any good, though Knuth b is tolerable for
occasional use. On the Web, Marsaglia’s generators are very variable in quality; I have a
good, highly portable generator that people are welcome to.

A godd rule is to always recheck important results with different generators, because
interactions of the generator withthe program can cause spurious effects, and use ones
based on different mathematical principles for safety.

Parallelism is a major problem – you are welcome to ask me for advice – thread quasi-

24

independence is a very tricky problem. If initialising separate per thread or per process
generators, you must use a very high-quality generator, with a very long-period, and
randomise the creation of your initial seeds (preferably using another generator).

Many scientific libraries have suitable matrix classes, but I tried using the STL and
Boost, and the code was longer, more complicated and much harder to debug than doing
it myself. It is much easier to write your own, as described in:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/C++/24a more numerics.odp

Exercises 15–18 help you to learn how. Also, note that Fortran storage order can be
faster than Algol (C/C++) order, due to the common use of the right solution (rather
than left solution) of equations. You can often make gains by storing both a matrix and
its transpose, but be warned that writing an efficient transpose function needs care. There
is example code (both Bjarne Stroustrup’s and mine) in:

https://www-internal.lsc.phy.cam.ac.uk/nmm1/C++/Exercises/Chapter 24

You are welcome to use them, but please give us credit for them.

Note that Algol 68 and Fortran handle subsections properly - i.e. you can pass them as
an argument to a function as a normal array. To do that, you must use a lower bound,
size and stride for each dimension, but the example code above does not do that.

25

