
Introduction to Modern Fortran

Data Types and Basic Calculation

Nick Maclaren

nmm1@cam.ac.uk

March 2014

Introduction to Modern Fortran – p. 1/??

Data Types (1)

• INTEGER for exact whole numbers
e.g. 1, 100, 534, --18, --654321 etc.

In maths, an approximation to the ring Z

• REAL for approximate, fractional numbers
e.g. 1.1, 3.0, 23.565, π, exp(1), etc.

In maths, an approximation to the field R

• COMPLEX for complex, fractional numbers
e.g. (1.1, --23.565), etc.

In maths, an approximation to the field C

Introduction to Modern Fortran – p. 2/??

Data Types (2)

• LOGICAL for truth values
These may have only values true or false

e.g. .TRUE. , .FALSE.
These are often called boolean values

• CHARACTER for strings of characters
e.g. ‘?’, ‘Albert Einstein’, ‘X + Y = ’, etc.

The string length is part of the type in Fortran
There is no separate character type, unlike C
There is more on this later

Introduction to Modern Fortran – p. 3/??

Integers (1)

• Integers are restricted to lie in a finite range

Typically ±2147483647 (--231 to 2
31--1)

Sometimes ±9.23 × 10
17 (--263 to 2

63--1)

A compiler may allow you to select the range
Often including ±32768 (−2

15 to 2
15--1)

Older and future systems may have other ranges
There is more on the arithmetic and errors later

Introduction to Modern Fortran – p. 4/??

Integers (2)

Fortran uses integers for:
• Loop counts and loop limits
• An index into an array or a position in a list
• An index of a character in a string
• As error codes, type categories etc.

Also use them for purely integral values
E.g. calculations involving counts (or money)
They can even be used for bit masks (see later)

Introduction to Modern Fortran – p. 5/??

Integer Constants

Usually, an optional sign and one or more digits
e.g. 0, 123, --45, +67, 00012345

E.g. ‘60’ in minutes = minutes + 60*hours

Also allowed in binary, octal and hexadecimal
e.g. B’011001’, O’35201’, Z’a12bd’

• As with names, the case is irrelevant

There is a little more, which is covered later

Introduction to Modern Fortran – p. 6/??

Reals

• Reals are held as floating--point values
These also have a finite range and precision

It is essential to use floating--point appropriately
• Much of the Web is misleading about this
This course will mention only the bare minimum
See ‘‘How Computers Handle Numbers’’
There is simplified version of that later on

Reals are used for continuously varying values
Essentially just as you were taught at A--level

Introduction to Modern Fortran – p. 7/??

IEEE 754

You can assume a variant of IEEE 754
You should almost always use IEEE 754 64--bit
There is information on how to select it later

IEEE 754 32–, 64– and 128–bit formats are:

10
−38 to 10

+38 and 6–7 decimal places
10

−308 to 10
+308 and 15–16 decimal places

10
−4932 to 10

+4932 and 33–34 decimal places

Older and future systems may be different

Introduction to Modern Fortran – p. 8/??

Real Constants

• Real constants must contain a decimal point
or an exponent

They can have an optional sign, just like integers

The basic fixed--point form is anything like:

123.456, --123.0, +0.0123, 123., .0123
0012.3, 0.0, 000., .000

• Optionally followed E or D and an exponent
1.0E6, 123.0D--3, .0123e+5, 123.d+06, .0e0

1E6 and 1D6 are also valid Fortran real constants

Introduction to Modern Fortran – p. 9/??

Complex Numbers

This course will generally ignore them
If you don’t know what they are, don’t worry

These are (real, imaginary) pairs of REALs
I.e. Cartesian notation, as at A--level

Constants are pairs of reals in parentheses
E.g. (1.23, --4.56) or (--1.0e--3, 0.987)

Introduction to Modern Fortran – p. 10/??

Declaring Numeric Variables

Variables hold values of different types
INTEGER :: count, income, mark
REAL :: width, depth, height

You can get all undeclared variables diagnosed
Add the statement IMPLICIT NONE at the start

of every program, subroutine, function etc.

If not, variables are declared implicitly by use
Names starting with I–N are INTEGER
Ones with A–H and O–Z are REAL

Introduction to Modern Fortran – p. 11/??

Implicit Declaration

• This is a common source of errors
REAL :: metres, inches
inch3s = meters*30.48

The effects can be even worse for function calls
Ask offline if you want to know the details

• Also the default REAL type is a disaster
Too inaccurate for practical use (see later)

• You should always use IMPLICIT NONE

Introduction to Modern Fortran – p. 12/??

Important Warning!

• I shall NOT do that myself

I warned you about this in the previous lecture
The problem is fitting all the text onto a slide
I shall often rely on implicit typing :--(

• Do what I say, don’t do what I do

If I omit it in example files, it is a BUG

Introduction to Modern Fortran – p. 13/??

Assignment Statements

The general form is
<variable> = <expression>

This is actually very powerful (see later)

This first evaluates the expression on the RHS
It then stores the result in the variable on the LHS
It replaces whatever value was there before

For example:

Max = 2 * Min

Sum = Sum + Term1 + Term2 + (Eps * Err)

Introduction to Modern Fortran – p. 14/??

Arithmetic Operators

There are five built--in numeric operations

+ addition

-- subtraction

* multiplication

/ division

** exponentiation (i.e. raise to the power of)

• Exponents can be any arithmetic type:

INTEGER, REAL or COMPLEX
Generally, it is best to use them in that order

Introduction to Modern Fortran – p. 15/??

Examples

Some examples of arithmetic expressions are
A*B--C

A + C1 -- D2
X + Y/7.0
2**K

A**B + C

A*B--C

(A + C1) -- D2
A + (C1 -- D2)
P**3/((X+Y*Z)/7.0--52.0)

Introduction to Modern Fortran – p. 16/??

Operator Precedence

Fortran uses normal mathematical conventions
• Operators bind according to precedence
• And then generally, from left to right

The precedence from highest to lowest is

** exponentiation

* / multiplication and division

+ -- addition and subtraction

• Parentheses (‘(’ and ‘)’) are used to control it
Use them whenever the order matters or it is clearer

Introduction to Modern Fortran – p. 17/??

Examples

X + Y * Z is equivalent to X + (Y * Z)

X + Y / 7.0 is equivalent to X + (Y / 7.0)
A -- B + C is equivalent to (A -- B) + C
A + B ** C is equivalent to A + (B ** C)

-- A ** 2 is equivalent to -- (A ** 2)

A -- (((B + C))) is equivalent to A -- (B + C)

• You can force any order you like
(X + Y) * Z

Adds X to Y and then multiplies by Z

Introduction to Modern Fortran – p. 18/??

Warning

X + Y + Z may be evaluated as any of
X + (Y + Z) or (X + Y) + Z or Y+ (X + Z) or . . .

Fortran defines what an expression means
It does not define how it is calculated

They are all mathematically equivalent
But may sometimes give slightly different results

See ‘‘How Computers Handle Numbers’’ for more

Introduction to Modern Fortran – p. 19/??

Precedence Problems

Mathematical conventions vary in some aspects
A / B * C – is it A / (B * C) or (A / B) * C?

A ** B ** C – is it A ** (B ** C) or (A ** B) ** C?

Fortran specifies that:
A / B * C is equivalent to (A / B) * C

A ** B ** C is equivalent to A ** (B ** C)

• Yes, ** binds from right to left!

Introduction to Modern Fortran – p. 20/??

Parenthesis Problems

Always use parentheses in ambiguous cases
If only to imply ‘‘Yes, I really meant that’’

And to help readers used to different rules
Programming languages vary in what they do

Be careful of over--doing it – what does this do?
(((A+(P*R+B)/2+B**3)/(4/Y)*C+D))+E)

• Several, simpler statements is better style

Introduction to Modern Fortran – p. 21/??

Integer Expressions

I.e. ones of integer constants and variables

INTEGER :: K, L, M
N = K*(L+2)/M**3--N

These are evaluated in integer arithmetic

• Division always truncates towards zero

If K = 4 and L = 5, then K+L/2 is 6
(--7)/3 and 7/(--3) are both --2

Introduction to Modern Fortran – p. 22/??

Mixed Expressions

INTEGER and REAL is evaluated as REAL
Either and COMPLEX goes to COMPLEX

Be careful with this, as it can be deceptive

INTEGER :: K = 5
REAL :: X = 1.3
X = X+K/2

That will add 2.0 to X, not 2.5
K/2 is still an INTEGER expression

Introduction to Modern Fortran – p. 23/??

Conversions

There are several ways to force conversion
• Intrinsic functions INT, REAL and COMPLEX

X = X+REAL(K)/2
N = 100*INT(X/1.25)+25

You can use appropriate constants
You can even add zero or multiply by one

X = X+K/2.0
X = X+(K+0.0)/2

The last isn’t very nice, but works well enough
And see later about KIND and precision

Introduction to Modern Fortran – p. 24/??

Mixed-type Assignment

<real variable> = <integer expression>
• The RHS is converted to REAL
Just as in a mixed--type expression

<integer variable> = <real expression>
• The RHS is truncated to INTEGER
It is always truncated towards zero

Similar remarks apply to COMPLEX
• The imaginary part is discarded, quietly

The RHS is evaluated independently of the LHS

Introduction to Modern Fortran – p. 25/??

Examples

INTEGER :: K = 9, L = 5, M = 3, N
REAL :: X, Y, Z
X = K ; Y = L ; Z = M
N = (K/L)*M

N = (X/Y)*Z

N will be 3 and 5 in the two cases

(--7)/3 = 7/(--3) = --2 and 7/3 = (--7)/(--3) = 2

Introduction to Modern Fortran – p. 26/??

Numeric Errors

See ‘‘How Computers Handle Numbers’’
This a a very minimal summary

• Overflowing the range is a serious error
As is dividing by zero (e.g. 123/0 or 0.0/0.0)
Fortran does not define what those cases do

• Each numeric type may behave differently
Even different compiler options will, too
• And do not assume results are predictable

Introduction to Modern Fortran – p. 27/??

Examples

Assume the INTEGER range is ±2147483647

And the REAL range is ±10
38

• Do you know what this is defined to do?

INTEGER :: K = 1000000
REAL :: X = 1.0e20
PRINT *, (K*K)/K, (X*X)/X

• The answer is ‘‘anything’’ – and it means it
Compilers optimise on the basis of no errors
Numeric errors can cause logical errors

Introduction to Modern Fortran – p. 28/??

Numeric Non-Errors (1)

• Conversion to a lesser type loses information
You will get no warning of this, unfortunately

REAL ⇒ INTEGER truncates towards zero
COMPLEX ⇒ REAL drops the imaginary part
COMPLEX ⇒ INTEGER does both of them

That also applies when dropping in precision
E.g. assigning a 64--bit real to a 32--bit one

Introduction to Modern Fortran – p. 29/??

Numeric Non-Errors (2)

Fortran does NOT specify the following
But it is true on all systems you will use

Results too small to represent are not errors
• They will be replaced by zero if necessary

• Inexact results round to the nearest value
That also applies when dropping in precision

Introduction to Modern Fortran – p. 30/??

Intrinsic Functions

Built--in functions that are always available
• No declaration is needed – just use them

For example:

Y = SQRT(X)
PI = 4.0 * ATAN(1.0)

Z = EXP(3.0*Y)

X = REAL(N)
N = INT(X)
Y = SQRT(--2.0*LOG(X))

Introduction to Modern Fortran – p. 31/??

Intrinsic Numeric Functions

REAL(n) ! Converts its argument n to REAL
INT(x) ! Truncates x to INTEGER (to zero)
AINT(x) ! The result remains REAL
NINT(x) ! Converts x to the nearest INTEGER
ANINT(x) ! The result remains REAL
ABS(x) ! The absolute value of its argument
! Can be used for INTEGER, REAL or COMPLEX
MAX(x,y,...) ! The maximum of its arguments
MIN(x,y,...) ! The minimum of its arguments
MOD(x,y) ! Returns x modulo y

And there are more – some are mentioned later

Introduction to Modern Fortran – p. 32/??

Intrinsic Mathematical Functions

SQRT(x) ! The square root of x
EXP(x) ! e raised to the power x
LOG(x) ! The natural logarithm of x
LOG10(x) ! The base 10 logarithm of x

SIN(x) ! The sine of x, where x is in radians
COS(x) ! The cosine of x, where x is in radians
TAN(x) ! The tangent of x, where x is in radians
ASIN(x) ! The arc sine of x in radians
ACOS(x) ! The arc cosine of x in radians
ATAN(x) ! The arc tangent of x in radians

And there are more – see the references

Introduction to Modern Fortran – p. 33/??

Bit Masks

As in C etc., integers are used for these
Use is by weirdly--named functions (historical)

Bit indices start at zero
Bit K has value 2

K (little--endian)
As usual, stick to non--negative integers

• A little tedious, but very easy to use

Introduction to Modern Fortran – p. 34/??

Bit Intrinsics

BIT---SIZE(x) ! The number of bits in x

BTEST(x, n) ! Test bit n of x
IBSET(x, n) ! Set bit n of x
IBCLR(x, n) ! Clear bit n of x
IBITS(x, m, n) ! Extract n bits
NOT(x) ! NOT x
IAND(x, y) ! x AND y
IOR(x, y) ! x OR y
IEOR(x, y) ! x (exclusive or) y
ISHFT(x, n) ! Logical shift
ISHFTC(x, n, [k]) ! Circular shift

Introduction to Modern Fortran – p. 35/??

Logical Type

These can take only two values: true or false
.TRUE. and .FALSE.

• Their type is LOGICAL (not BOOL)

LOGICAL :: red, amber, green

IF (red) THEN
PRINT *, ’Stop’
red = .False. ; amber = .True. ; green = .False.

ELSIF (red .AND. amber) THEN
. . .

Introduction to Modern Fortran – p. 36/??

Relational Operators

• Relations create LOGICAL values
These can be used on any other built--in type

== (or .EQ.) equal to
/= (or .NE.) not equal to

These can be used only on INTEGER and REAL
< (or .LT.) less than
<= (or .LE.) less than or equal
> (or .GT.) greater than
>= (or .GE.) greater than or equal

See ‘‘How Computers Handle Numbers’’ for more

Introduction to Modern Fortran – p. 37/??

Logical Expressions

Can be as complicated as you like

Start with .TRUE., .FALSE. and relations
Can use parentheses as for numeric ones

.NOT., .AND. and .OR.

.EQV. must be used instead of ==

.NEQV. must be used instead of /=

• Fortran is not like C--derived languages
LOGICAL is not a sort of INTEGER

Introduction to Modern Fortran – p. 38/??

Short Circuiting

LOGICAL :: flag
flag = (Fred() > 1.23 .AND. Joe() > 4.56)

Fred and Joe may be called in either order
If Fred returns 1.1, then Joe may not be called
If Joe returns 3.9, then Fred may not be called

Fortran expressions define the answer only
The behaviour is up to the compiler
One of the reasons that it is so optimisable

Introduction to Modern Fortran – p. 39/??

Character Type

Used when strings of characters are required
Names, descriptions, headings, etc.

• Fortran’s basic type is a fixed--length string
Unlike almost all more recent languages

• Character constants are quoted strings
PRINT *, ’This is a title’
PRINT *, "And so is this"

The characters between quotes are the value

Introduction to Modern Fortran – p. 40/??

Character Data

• The case of letters is significant in them
Multiple spaces are not equivalent to one space
Any representable character may be used

The only Fortran syntax where the above is so
Remember the line joining method?

In ’Time^^=^^13:15’, with ‘^’ being a space
The character string is of length 15
Character 1 is T, 8 is a space, 10 is 1 etc.

Introduction to Modern Fortran – p. 41/??

Character Constants

"This has UPPER, lower and MiXed cases"
’This has a double quote (") character’
"Apostrophe (’) is used for single quote"
"Quotes ("") are escaped by doubling"
’Apostrophes (’’) are escaped by doubling’
’ASCII ‘, |, ~, ^, @, # and \ are allowed here’

"Implementations may do non--standard things"
’Backslash (\) MAY need to be doubled’
"Avoid newlines, tabs etc. for your own sanity"

Introduction to Modern Fortran – p. 42/??

Character Variables

CHARACTER :: answer, marital---status

CHARACTER(LEN=10) :: name, dept, faculty
CHARACTER(LEN=32) :: address

answer and marital---status are each of length 1

They hold precisely one character each
answer might be blank, or hold ’Y’ or ’N’

name, dept and faculty are of length 10
And address is of length 32

Introduction to Modern Fortran – p. 43/??

Another Form

CHARACTER :: answer*1, &

marital---status*1, name*10, &

dept*10, faculty*10, address*32

While this form is historical, it is more compact

• Don’t mix the forms – this is an abomination

CHARACTER(LEN=10) :: dept, faculty, addr*32

• For obscure reasons, using LEN= is cleaner
It avoids some arcane syntactic ‘‘gotchas’’

Introduction to Modern Fortran – p. 44/??

Character Assignment

CHARACTER(LEN=6) :: forename, surname
forename = ’Nick’
surname = ’Maclaren’

forename is padded with spaces (’Nick^^’)
surname is truncated to fit (’Maclar’)

• Unfortunately, you won’t get told
But at least it won’t overwrite something else

Introduction to Modern Fortran – p. 45/??

Character Concatenation

Values may be joined using the / / operator

CHARACTER(LEN=6) :: identity, A, B, Z
identity = ’TH’ // ’OMAS’
A = ’TH’ ; B = ’OMAS’
Z = A // B
PRINT *, Z

Sets identity to ’THOMAS’
But Z looks as if it is still ’TH’ – why?

/ / does not remove trailing spaces
It uses the whole length of its inputs

Introduction to Modern Fortran – p. 46/??

Substrings

If Name has length 9 and holds ’Marmaduke’
Name(1:1) would refer to ’M’
Name(2:4) would refer to ’arm’
Name(6:) would refer to ’duke’ – note the form!

We could therefore write statements such as

CHARACTER :: name*20, surname*18, title*4

name = ’Dame Edna Everage’
title = name(1:4)
surname = name(11:)

Introduction to Modern Fortran – p. 47/??

Example

This is not an example of good style!

PROGRAM message
IMPLICIT NONE
CHARACTER :: mess*72, date*14, name*40

mess = ’Program run on’
mess(30:) = ’by’
READ *, date, name

mess(16:29) = date
mess(33:) = name
PRINT *, mess

END PROGRAM message

Introduction to Modern Fortran – p. 48/??

Warning – a “Gotcha”

CHARACTER substrings look like array sections
But there is no equivalent of array indexing

CHARACTER :: name*20, temp*1

temp = name(10)

• name(10) is an implicit function call
Use name(10:10) to get the tenth character

CHARACTER variables come in various lengths
name is not made up of 20 variables of length 1

Introduction to Modern Fortran – p. 49/??

Character Intrinsics

LEN(c) ! The STORAGE length of c
TRIM(c) ! c without trailing blanks
ADJUSTL(C) ! With leading blanks removed
INDEX(str,sub) ! Position of sub in str
SCAN(str,set) ! Position of any character in set
REPEAT(str,num) ! num copies of str, joined

And there are more – see the references

Introduction to Modern Fortran – p. 50/??

Examples

name = ’ Bloggs ’
newname = TRIM(ADJUSTL(name))

newname would contain ’Bloggs’

CHARACTER(LEN=6) :: A, B, Z
A = ’TH’ ; B = ’OMAS’
Z = TRIM(A) // B

Now Z gets set to ’THOMAS’ correctly!

Introduction to Modern Fortran – p. 51/??

Collation Sequence

This controls whether "ffred" < "Fred" or not

• Fortran is not a locale--based language
It specifies only the following

’A’ < ’B’ < ... < ’Y’ < ’Z’ | These ranges

’a’ < ’b’ < ... < ’y’ < ’z’ | will not

’0’ < ’1’ < ... < ’8’ < ’9’ | overlap

’ ’ is less than all of ’A’, ’a’ and ’0’

A shorter operand is extended with blanks (’ ’)

Introduction to Modern Fortran – p. 52/??

Working with CHARACTER

This is one of the things that has been omitted
It’s there in the notes, if you are interested

Can assign, concatenate and compare them
Can extract substrings and do lots more

But, for the academy, you don’t need to do that
• Skip the practicals that need those facilities

Introduction to Modern Fortran – p. 53/??

Named Constants (1)

• These have the PARAMETER attribute

REAL, PARAMETER :: pi = 3.14159
INTEGER, PARAMETER :: maxlen = 100

They can be used anywhere a constant can be

CHARACTER(LEN=maxlen) :: string
circum = pi * diam

IF (nchars < maxlen) THEN
. . .

Introduction to Modern Fortran – p. 54/??

Named Constants (2)

Why are these important?

They reduce mistyping errors in long numbers
Is 3.14159265358979323846D0 correct?

They can make formulae etc. much clearer
Much clearer which constant is being used

They make it easier to modify the program later

INTEGER, PARAMETER :: MAX---DIMENSION = 10000

Introduction to Modern Fortran – p. 55/??

Named Character Constants

CHARACTER(LEN=*), PARAMETER :: &

author = ’Dickens’, title = ’A Tale of Two Cities’

LEN=* takes the length from the data

It is permitted to define the length of a constant
The data will be padded or truncated if needed

• But the above form is generally the best

Introduction to Modern Fortran – p. 56/??

Named Constants (3)

• Expressions are allowed in constant values

REAL, PARAMETER :: pi = 3.14135, &
pi---by---4 = pi/4, two---pi = 2*pi, &

e = exp(1.0)

CHARACTER(LEN=*), PARAMETER :: &

all---names = ’Pip, Squeak, Wilfred’, &

squeak = all---names(6:11)

Generally, anything reasonable is allowed
• It must be determinable at compile time

Introduction to Modern Fortran – p. 57/??

Initialisation

• Variables start with undefined values
They often vary from run to run, too

• Initialisation is very like defining constants
Without the PARAMETER attribute

INTEGER :: count = 0, I = 5, J = 100
REAL :: inc = 1.0E5, max = 10.0E5, min = --10.0E5
CHARACTER(LEN=10) :: light = ’Amber’
LOGICAL :: red = .TRUE., blue = .FALSE., &

green = .FALSE.

Introduction to Modern Fortran – p. 58/??

Information for Practicals

A program has the following basic structure:

PROGRAM name
Declarations
Other statements
END PROGRAM name

Read and write data from the terminal using:

READ *, variable [, variable]...

PRINT *, expression [, expression]...

Introduction to Modern Fortran – p. 59/??

	Data Types (1)
	Data Types (2)
	Integers (1)
	Integers (2)
	Integer Constants
	Reals
	IEEE 754
	Real Constants
	Complex Numbers
	Declaring Numeric Variables
	Implicit Declaration
	Important Warning!
	Assignment Statements
	Arithmetic Operators
	Examples
	Operator Precedence
	Examples
	Warning
	Precedence Problems
	Parenthesis Problems
	Integer Expressions
	Mixed Expressions
	Conversions
	Mixed-type Assignment
	Examples
	Numeric Errors
	Examples
	Numeric Non-Errors (1)
	Numeric Non-Errors (2)
	Intrinsic Functions
	Intrinsic Numeric Functions
	Intrinsic Mathematical Functions
	Bit Masks
	Bit Intrinsics
	Logical Type
	Relational Operators
	Logical Expressions
	Short Circuiting
	Character Type
	Character Data
	Character Constants
	Character Variables
	Another Form
	Character Assignment
	Character Concatenation
	Substrings
	Example
	Warning -- a ``Gotcha''
	Character Intrinsics
	Examples
	Collation Sequence
	Working with CHARACTER
	Named Constants (1)
	Named Constants (2)
	Named Character Constants
	Named Constants (3)
	Initialisation
	Information for Practicals

