
Introduction to Modern Fortran

Control Constructs

Nick Maclaren

nmm1@cam.ac.uk

March 2014

Introduction to Modern Fortran – p. 1/??

Control Constructs

These change the sequential execution order
We cover the main constructs in some detail
We shall cover procedure call later

The main ones are:

Conditionals (IF etc.)
Loops (DO etc.)
Switches (SELECT/CASE etc.)
Branches (GOTO etc.)

Loops are by far the most complicated

Introduction to Modern Fortran – p. 2/??

Single Statement IF

Oldest and simplest is the single statement IF
IF (logical expression) simple statement

If the LHS is .True., the RHS is executed
If not, the whole statement has no effect

IF (MOD(count,1000) == 0) &
PRINT *, ’Reached’, count

IF (X < A) X = A

Unsuitable for anything complicated
• Only action statements can be on the RHS
No IFs or statements containing blocks

Introduction to Modern Fortran – p. 3/??

Block IF Statement

A block IF statement is more flexible
The following is the most traditional form of it

IF (logical expression) THEN
then block of statements

ELSE
else block of statements

END IF

If the expr. is .True., the first block is executed
If not, the second one is executed

END IF can be spelled ENDIF

Introduction to Modern Fortran – p. 4/??

Example

LOGICAL :: flip

IF (flip .AND. X /= 0.0) THEN
PRINT *, ’Using the inverted form’
X = 1.0/A
Y = EXP(--A)

ELSE
X = A
Y = EXP(A)

END IF

Introduction to Modern Fortran – p. 5/??

Omitting the ELSE

The ELSE and its block can be omitted

IF (X > Maximum) THEN
X = Maximum

END IF

IF (name(1:4) == "Miss" .OR. &

name(1:4) == "Mrs.") THEN

name(1:3) = "Ms."
name(4:) = name(5:)

END IF

Introduction to Modern Fortran – p. 6/??

Including ELSE IF Blocks (1)

ELSE IF functions much like ELSE and IF

IF (X < 0.0) THEN ! This is tried first
X = A

ELSE IF (X < 2.0) THEN ! This second
X = A + (B--A)*(X--1.0)

ELSE IF (X < 3.0) THEN ! And this third
X = B + (C--B)*(X--2.0)

ELSE ! This is used if none succeed
X = C

END IF

Introduction to Modern Fortran – p. 7/??

Including ELSE IF Blocks (2)

You can have as many ELSE IFs as you like
There is only one END IF for the whole block

All ELSE IFs must come before any ELSE
Checked in order, and the first success is taken

You can omit the ELSE in such constructs

ELSE IF can be spelled ELSE IF

Introduction to Modern Fortran – p. 8/??

Named IF Statements (1)

The IF can be preceded by <name> :

And the END IF followed by <name> – note!
And any ELSE IF/THENand ELSE may be

gnole : IF (X < 0.0) THEN
X = A

ELSE IF (X < 2.0) THEN gnole
X = A + (B--A)*(X--1.0)

ELSE gnole
X = C

END IF gnole

Introduction to Modern Fortran – p. 9/??

Named IF Statements (2)

The IF construct name must match and be distinct
A great help for checking and clarity
• You should name at least all long IFs

If you don’t nest IFs much, this style is fine

gnole : IF (X < 0.0) THEN
X = A

ELSE IF (X < 2.0) THEN
X = A + (B--A)*(X--1.0)

ELSE
X = C

END IF gnole

Introduction to Modern Fortran – p. 10/??

Block Contents

• Almost any executable statements are OK
Both kinds of IF, complete loops etc.
You may never notice the few restrictions

That applies to all of the block statements
IF, DO, SELECT etc.

And all of the blocks within an IF statement

• Avoid deep levels and very long blocks
Purely because they will confuse human readers

Introduction to Modern Fortran – p. 11/??

Example

phasetest: IF (state == 1) THEN
IF (phase < pi---by---2) THEN

. . .
ELSE

. . .
END IF

ELSE IF (state == 2) THEN phasetest
IF (phase > pi) PRINT *, ’A bit odd here’

ELSE phasetest
IF (phase < pi) THEN

. . .
END IF

END IF phasetest

Introduction to Modern Fortran – p. 12/??

Basic Loops (1)

• A single loop construct, with variations
The basic syntax is:

[loop name :] DO [[,] loop control]
block

END DO [loop name]

loop name and loop control are optional
With no loop control, it loops indefinitely

END DO can be spelled ENDDO
The comma after DO is entirely a matter of taste

Introduction to Modern Fortran – p. 13/??

Basic Loops (2)

DO ! Implement the Unix ’yes’ command

PRINT *, ’y’
END DO

yes: DO
PRINT *, ’y’

END DO yes

The loop name must match and be distinct
• You should name at least all long loops
A great help for checking and clarity
Other of it uses are described later

Introduction to Modern Fortran – p. 14/??

Indexed Loop Control

The loop control has the following form
<integer variable> = <LWB> , <UPB>

The bounds can be any integer expressions

The variable starts at the lower bound
A: If it exceeds the upper bound, the loop exits

The loop body is executed †

The variable is incremented by one
The loop starts again from A

† See later about EXIT and CYCLE

Introduction to Modern Fortran – p. 15/??

Examples

DO I = 1 , 3
PRINT *, 7*I--3

END DO

Prints 3 lines containing 4, 11 and 18

DO I = 3 , 1
PRINT *, 7*I--3

END DO

Does nothing

Introduction to Modern Fortran – p. 16/??

Using an increment

The general form is
<var> = <start> , <finish> , <step>

<var> is set to <start>, as before
<var> is incremented by <step>, not one
Until it exceeds <finish> (if <step> is positive)
Or is smaller than <finish> (if <step> is negative)

• The direction depends on the sign of <step>
The loop is invalid if <step> is zero, of course

Introduction to Modern Fortran – p. 17/??

Examples

DO I = 1 , 20 , 7
PRINT *, I

END DO

Prints 3 lines containing 1, 8 and 15

DO I = 20 , 1 , 7
PRINT *, I

END DO

Does nothing

Introduction to Modern Fortran – p. 18/??

Examples

DO I = 20 , 1 , --7
PRINT *, I

END DO

Prints 3 lines containing 20, 13 and 6

DO I = 1 , 20 , --7
PRINT *, I

END DO

Does nothing

Introduction to Modern Fortran – p. 19/??

Mainly for C Programmers

The control expressions are calculated on entry
• Changing their variables has no effect

• It is illegal to assign to the loop variable

DO index = i*j, n**21, k

n = 0; k = --1 ! Does not affect the loop
index = index+1 ! Is forbidden

END DO

Introduction to Modern Fortran – p. 20/??

Loop Control Statements

EXIT leaves the innermost loop
CYCLE skips to the next iteration
EXIT/CYCLE name is for the loop named name
These are usually used in single--statement IFs

DO
x = read---number()

IF (x < 0.0) EXIT
count = count+1; total = total+x
IF (x == 0.0) CYCLE
. . .

END DO

Introduction to Modern Fortran – p. 21/??

Example

INTEGER :: state(right), table(left , right)
FirstMatch = 0
outer: DO i = 1 , right

IF (state(right) /= OK) CYCLE
DO j = 1 , left

IF (found(table(j,i)) THEN
FirstMatch = i
EXIT outer

END IF
END DO

END DO outer

Introduction to Modern Fortran – p. 22/??

Warning

What is the control variable’s value after loop exit?

• From Fortran 66 to Fortran 2003:

It is undefined after normal exit
Web pages and the ignorant often say otherwise
It IS defined if you leave by EXIT

• It IS defined in Fortran 2008

Generally, it is better not to rely on its value
E.g. it is undefined when using OpenMP

Introduction to Modern Fortran – p. 23/??

WHILE Loop Control

The loop control has the following form
WHILE (<logical expression>)

The expression is reevaluated for each cycle
The loop exits as soon as it becomes .FALSE.
The following are equivalent:

DO WHILE (<logical expression>)

DO
IF (.NOT. (<logical expression>)) EXIT

Introduction to Modern Fortran – p. 24/??

CONTINUE

CONTINUE is a statement that does nothing
It used to be fairly common, but is now rare

Its main use is in blocks that do nothing
Empty blocks aren’t allowed in Fortran

Otherwise mainly a placeholder for labels
This is purely to make the code clearer

But it can be used anywhere a statement can

Introduction to Modern Fortran – p. 25/??

RETURN and STOP

RETURN returns from a procedure
• It does not return a result
How to do that is covered under procedures

STOP halts the program cleanly
• Do not spread it throughout your code
Call a procedure to tidy up and finish off

Introduction to Modern Fortran – p. 26/??

Multi-way IFs

IF (expr == val1) THEN
x = 1.23

ELSE IF (expr >= val2 .AND. expr <= val3) THEN
CONTINUE

ELSE IF (expr == val4) THEN
x = x + 4.56

ELSE
x = 7.89 -- x

END IF

Very commonly, expr is always the same
And all of the vals are constant expressions
Then there is another way of coding it

Introduction to Modern Fortran – p. 27/??

SELECT CASE (1)

PRINT *, ’Happy Birthday’
SELECT CASE (age)
CASE(18)

PRINT *, ’You can now vote’
CASE(40)

PRINT *, ’And life begins again’
CASE(60)

PRINT *, ’And free prescriptions’
CASE(100)

PRINT *, ’And greetings from the Queen’
CASE DEFAULT

PRINT *, ’It’’s just another birthday’
END SELECT

Introduction to Modern Fortran – p. 28/??

SELECT CASE (2)

• The CASE clauses are statements
To put on one line, use ‘CASE(18) ; <statement>’

The values must be constant expressions
INTEGER, CHARACTER or LOGICAL
You can specify ranges for the first two

CASE (--42:42) ! --42 to 42 inclusive
CASE (42:) ! 42 or above
CASE (:42) ! Up to and including 42

Be careful with CHARACTER ranges

Introduction to Modern Fortran – p. 29/??

SELECT CASE (3)

SELECT CASE can be spelled SELECTCASE
END SELECT can be spelled ENDSELECT
• CASE DEFAULT but NOT CASEDEFAULT

SELECT and CASE can be named, like IF

• It is an error for the ranges to overlap

It is not an error for ranges to be empty
Empty ranges don’t overlap with anything
It is not an error for the default to be unreachable

Introduction to Modern Fortran – p. 30/??

Labels and GOTO

Warning: this area gets seriously religious!

Most executable statements can be labelled
GOTO <label> branches directly to the label

In old Fortran, you needed to use a lot of these
• Now, you should almost never use them
If you think you need to, consider redesigning

• Named loops, EXIT and CYCLE are better

Introduction to Modern Fortran – p. 31/??

Remaining uses of GOTO

• Useful for branching to clean--up code
E.g. diagnostics, undoing partial updates etc.
This is by FAR the main remaining use

Fortran does not have any cleaner mechanisms
E.g. it has no exception handling constructs

• They make a few esoteric algorithms clearer
E.g. certain finite--state machine models
I have seen such code 3–4 times in 40+ years

Introduction to Modern Fortran – p. 32/??

Clean-up Code (1)

SUBROUTINE Fred
DO . . .

CALL SUBR (arg1 , arg2 , . . . , argn , ifail)
IF (ifail /= 0) GOTO 999

END DO
. . . lots more similar code . . .
RETURN

999 SELECT CASE (ifail)
CASE(1) ! Code for ifail = 1

. . .
CASE(2) ! Code for ifail = 2

. . .
END SUBROUTINE Fred

Introduction to Modern Fortran – p. 33/??

Clean-up Code (2)

Many people regard this as better style:

SUBROUTINE Fred
DO . . .

CALL SUBR (arg1 , arg2 , . . . , argn , ifail)
IF (ifail /= 0) GOTO 999

END DO

999 CONTINUE
SELECT CASE (ifail)
CASE(1) ! Code for ifail = 1

. . .
END SUBROUTINE Fred

Introduction to Modern Fortran – p. 34/??

Other Mechanisms

Switches, branches and labels are omitted
They’re there in the notes, if you are interested

• You very rarely need to use them, anyway

Introduction to Modern Fortran – p. 35/??

	Control Constructs
	Single Statement IF
	Block IF Statement
	Example
	Omitting the ELSE
	Including ELSE IF Blocks (1)
	Including ELSE IF Blocks (2)
	Named IF Statements (1)
	Named IF Statements (2)
	Block Contents
	Example
	Basic Loops (1)
	Basic Loops (2)
	Indexed Loop Control
	Examples
	Using an increment
	Examples
	Examples
	Mainly for C Programmers
	Loop Control Statements
	Example
	Warning
	WHILE Loop Control
	CONTINUE
	RETURN and STOP
	Multi-way IFs
	SELECT CASE (1)
	SELECT CASE (2)
	SELECT CASE (3)
	Labels and GOTO
	Remaining uses of GOTO
	Clean-up Code (1)
	Clean-up Code (2)
	Other Mechanisms

