
Introduction to Modern Fortran

Procedures

Nick Maclaren

nmm1@cam.ac.uk

March 2014

Introduction to Modern Fortran – p. 1/??

Sub-Dividing The Problem

• Most programs are thousands of lines
Few people can grasp all the details

• You often use similar code in several places

• You often want to test parts of the code

• Designs often break up naturally into steps

Hence, all sane programmers use procedures

Introduction to Modern Fortran – p. 2/??

What Fortran Provides

There must be a single main program
There are subroutines and functions
All are collectively called procedures

A subroutine is some out--of--line code
There are very few restrictions on what it can do
It is always called exactly where it is coded

A function’s purpose is to return a result
There are some restrictions on what it can do
It is called only when its result is needed

Introduction to Modern Fortran – p. 3/??

Example – Cholesky (1)

We saw this when considering arrays
It is a very typical, simple subroutine

SUBROUTINE CHOLESKY (A)
IMPLICIT NONE
INTEGER :: J, N
REAL :: A(:, :), X
N = UBOUND(A, 1)
DO J = 1, N

. . .
END DO

END SUBROUTINE CHOLESKY

Introduction to Modern Fortran – p. 4/??

Example – Cholesky (2)

And this is how it is called

PROGRAM MAIN
IMPLICIT NONE
REAL, DIMENSION(5, 5) :: A = 0.0
REAL, DIMENSION(5) :: Z

. . .
CALL CHOLESKY (A)

. . .
END PROGRAM MAIN

We shall see how to declare it later

Introduction to Modern Fortran – p. 5/??

Example – Variance

FUNCTION Variance (Array)
IMPLICIT NONE
REAL :: Variance, X
REAL, INTENT(IN), DIMENSION(:) :: Array
X = SUM(Array)/SIZE(Array)
Variance = SUM((Array--X)**2)/SIZE(Array)

END FUNCTION Variance

REAL, DIMENSION(1000) :: data
. . .

Z = Variance(data)

We shall see how to declare it later

Introduction to Modern Fortran – p. 6/??

Example – Sorting (1)

This was the harness of the selection sort
Replace the actual sorting code by a call

PROGRAM sort10
IMPLICIT NONE
INTEGER, DIMENSION(1:10) :: nums
. . .

! ------ Sort the numbers into ascending order of magnitude

CALL SORTIT (nums)

! ------ Write out the sorted list
. . .

END PROGRAM sort10

Introduction to Modern Fortran – p. 7/??

Example – Sorting (2)

SUBROUTINE SORTIT (array)
IMPLICIT NONE
INTEGER :: temp, array(:), J, K

L1: DO J = 1, UBOUND(array,1)--1
L2: DO K = J+1, UBOUND(array,1)

IF(array(J) > array(K)) THEN
temp = array(K)
array(K) = array(J)
array(J) = temp

END IF
END DO L2

END DO L1

END SUBROUTINE SORTIT

Introduction to Modern Fortran – p. 8/??

CALL Statement

The CALL statement evaluates its arguments
The following is an over--simplified description

• Variables and array sections define memory
• Expressions are stored in a hidden variable

It then transfers control to the subroutine
Passing the locations of the actual arguments

Upon return, the next statement is executed

Introduction to Modern Fortran – p. 9/??

SUBROUTINE Statement

Declares the procedure and its arguments
These are called dummy arguments in Fortran

The subroutine’s interface is defined by:
• The SUBROUTINE statement itself
• The declarations of its dummy arguments
• And anything that those use (see later)

SUBROUTINE SORTIT (array)
INTEGER :: [temp,] array(:) [, J, K]

Introduction to Modern Fortran – p. 10/??

Subroutines With No Arguments

You aren’t required to have any arguments
You can omit the parentheses if you prefer
Preferably either do or don’t, but you can mix uses

SUBROUTINE Joe ()

SUBROUTINE Joe

CALL Joe ()

CALL Joe

Introduction to Modern Fortran – p. 11/??

Statement Order

A SUBROUTINE statement starts a subroutine
Any USE statements must come next
Then IMPLICIT NONE
Then the rest of the declarations
Then the executable statements
It ends at an END SUBROUTINE statement

PROGRAM and FUNCTION are similar

There are other rules, but you may ignore them

Introduction to Modern Fortran – p. 12/??

Dummy Arguments

• Their names exist only in the procedure
They are declared much like local variables

Any actual argument names are irrelevant
Or any other names outside the procedure

• The dummy arguments are associated
with the actual arguments

Think of association as a bit like aliasing

Introduction to Modern Fortran – p. 13/??

Argument Matching

Dummy and actual argument lists must match
The number of arguments must be the same
Each argument must match in type and rank

That can be relaxed in several ways
See under advanced use of procedures

We shall come back to array arguments shortly
Most of the complexities involve them
This is for compatibility with old standards

Introduction to Modern Fortran – p. 14/??

Functions

Often the required result is a single value
It is easier to write a FUNCTION procedure

E.g. to find the largest of three values:
• Find the largest of the first and second
• Find the largest of that and the third

Yes, I know that the MAX function does this!

The function name defines a local variable
• Its value on return is the result returned
The RETURN statement does not take a value

Introduction to Modern Fortran – p. 15/??

Example (1)

FUNCTION largest---of (first, second, third)

IMPLICIT NONE
INTEGER :: largest---of

INTEGER :: first, second, third
IF (first > second) THEN

largest---of = first

ELSE
largest---of = second

END IF
IF (third > largest---of) largest---of = third

END FUNCTION largest---of

Introduction to Modern Fortran – p. 16/??

Example (2)

INTEGER :: trial1, trial2 ,trial3, total, count
total = 0 ; count = 0
DO

PRINT *, ’Type three trial values:’
READ *, trial1, trial2, trial3

IF (MIN(trial1, trial2, trial3) < 0) EXIT
count = count + 1
total = total + &

largest---of(trial1, trial2, trial3)

END DO
PRINT *, ’Number of trial sets = ’, count, &

’ Total of best of 3 = ’,total

Introduction to Modern Fortran – p. 17/??

Functions With No Arguments

You aren’t required to have any arguments
You must not omit the parentheses

FUNCTION Fred ()
INTEGER :: Fred

X = 1.23 * Fred ()

CALL Alf (Fred ())

In the following, Fred is a procedure argument

CALL Alf (Fred)

Introduction to Modern Fortran – p. 18/??

Internal Procedures (1)

Procedures can contain internal procedures
These can be SUBROUTINEs and FUNCTIONs
The statement order is as follows:

PROGRAM, SUBROUTINE or FUNCTION
All of the code of the actual procedure

CONTAINS
Any number of internal procedures

END PROGRAM, SUBROUTINE or FUNCTION

• Internal procedures may not themselves
contain internal procedures

Introduction to Modern Fortran – p. 19/??

Internal Procedures (2)

• Warning: that order takes some getting used to

The procedure can use the internal procedures
And one of them can call any other

Most useful for small, private auxiliary ones
You can include any number of internal procedures

• They are visible only in the outer procedure
Won’t clash with the same name elsewhere

Introduction to Modern Fortran – p. 20/??

Internal Procedures (3)

PROGRAM main
REAL, DIMENSION(10) :: vector
PRINT *, ’Type 10 values’
READ *, vector

PRINT *, ’Variance = ’, Variance(vector)

CONTAINS
FUNCTION Variance (Array)

REAL :: Variance, X
REAL, INTENT(IN), DIMENSION(:) :: Array
X = SUM(Array)/SIZE(Array)
Variance = SUM((Array--X)**2)/SIZE(Array)

END FUNCTION Variance
END PROGRAM main

Introduction to Modern Fortran – p. 21/??

Name Inheritance (1)

Everything accessible in the enclosing procedure
can also be used in the internal procedure

This includes all of the local declarations
And anything imported by USE (covered later)

Internal procedures need only a few arguments
Just the things that vary between calls
Everything else can be used directly

Introduction to Modern Fortran – p. 22/??

Name Inheritance (2)

A local name takes precedence

PROGRAM main
REAL :: temp = 1.23
CALL pete (4.56)

CONTAINS
SUBROUTINE pete (temp)

PRINT *, temp

END SUBROUTINE pete
END PROGRAM main

Will print 4.56, not 1.23
Avoid doing this – it’s very confusing

Introduction to Modern Fortran – p. 23/??

Using Procedures

Use this technique for solving test problems

• It is one of the best techniques for real code

There is another, equally good one, under modules

And there are yet others that you may need to use

Introduction to Modern Fortran – p. 24/??

INTENT (1)

You can make arguments read--only

SUBROUTINE Summarise (array, size)
INTEGER, INTENT(IN) :: size
REAL, DIMENSION(size) :: array

That will prevent you writing to it by accident
Or calling another procedure that does that
It may also help the compiler to optimise

• Strongly recommended for read--only args

Introduction to Modern Fortran – p. 25/??

INTENT (2)

You can also make them write--only
Less useful, but still very worthwhile

SUBROUTINE Init (array, value)
IMPLICIT NONE
REAL, DIMENSION(:), INTENT(OUT) :: array
REAL, INTENT(IN) :: value
array = value

END SUBROUTINE Init

As useful for optimisation as INTENT(IN)

Introduction to Modern Fortran – p. 26/??

INTENT (3)

The default is effectively INTENT(INOUT)

• But specifying INTENT(INOUT) is useful
It will trap the following nasty error

SUBROUTINE Munge (value)
REAL, INTENT(INOUT) :: value
value = 100.0*value

PRINT *, value

END SUBROUTINE Munge

CALL Munge(1.23)

Introduction to Modern Fortran – p. 27/??

Example

SUBROUTINE expsum(n, k, x, sum)
IMPLICIT NONE
INTEGER, INTENT(IN) :: n
REAL, INTENT(IN) :: k, x
REAL, INTENT(OUT) :: sum
INTEGER :: i
sum = 0.0
DO i = 1, n

sum = sum + exp(--i*k*x)

END DO
END SUBROUTINE expsum

Introduction to Modern Fortran – p. 28/??

Aliasing

Two arguments may overlap only if read--only
Also applies to arguments and global data
• If either is updated, weird things happen

Fortran doesn’t have any way to trap that
Nor do any other current languages – sorry

Use of INTENT(IN) will stop it in many cases

• Be careful when using array arguments
Including using array elements as arguments

Introduction to Modern Fortran – p. 29/??

PURE Functions

You can declare a function to be PURE

All data arguments must specify INTENT(IN)
It must not modify any global data
It must not do I /O (except with internal files)
It must call only PURE procedures
Some restrictions on more advanced features

Generally overkill – but good practice
Most built--in procedures are PURE

Introduction to Modern Fortran – p. 30/??

Example

This is the cleanest way to define a function

PURE FUNCTION Variance (Array)
IMPLICIT NONE
REAL :: Variance, X
REAL, INTENT(IN), DIMENSION(:) :: Array
X = SUM(Array)/SIZE(Array)
Variance = SUM((Array--X)**2)/SIZE(Array)

END FUNCTION Variance

Most safety, and best possible optimisation

Introduction to Modern Fortran – p. 31/??

ELEMENTAL Functions

Functions can be declared as ELEMENTAL
Like PURE, but arguments must be scalar

You can use them on arrays and in WHERE
They apply to each element, like built--in SIN

ELEMENTAL FUNCTION Scale (arg1, arg2)
REAL, INTENT(IN) :: arg1, arg2
Scale = arg1/sqrt(arg1**2+arg2**2)

END FUNCTION Scale

REAL, DIMENSION(100) :: arr1, arr2, array
array = Scale(arr1, arr2)

Introduction to Modern Fortran – p. 32/??

Keyword Arguments (1)

SUBROUTINE AXIS (X0, Y0, Length, Min, Max, Intervals)
REAL, INTENT(IN) :: X0, Y0, Length, Min, Max
INTEGER, INTENT(IN) :: Intervals

END SUBROUTINE AXIS

CALL AXIS(0.0, 0.0, 100.0, 0.1, 1.0, 10)

• Error prone to write and unclear to read

And it can be a lot worse than that!

Introduction to Modern Fortran – p. 33/??

Keyword Arguments (2)

Dummy arg. names can be used as keywords
You don’t have to remember their order

SUBROUTINE AXIS (X0, Y0, Length, Min, Max, Intervals)
. . .

CALL AXIS(Intervals=10, Length=100.0, &
Min=0.1, Max=1.0, X0=0.0, Y0=0.0)

• The argument order now doesn’t matter
The keywords identify the dummy arguments

Introduction to Modern Fortran – p. 34/??

Keyword Arguments (3)

Keywords arguments can follow positional
The following is allowed

SUBROUTINE AXIS (X0, Y0, Length, Min, Max, Intervals)
. . .

CALL AXIS(0.0, 0.0, Intervals=10, Length=100.0, &
Min=0.1, Max=1.0)

• Remember that the best code is the clearest
Use whichever convention feels most natural

Introduction to Modern Fortran – p. 35/??

Keyword Reminder

Keywords are not names in the calling procedure
They are used only to map to dummy arguments
The following works, but is somewhat confusing

SUBROUTINE Nuts (X, Y, Z)
REAL, DIMENSION(:) :: X
INTEGER :: Y, Z

END SUBROUTINE Nuts

INTEGER :: X
REAL, DIMENSION(100) :: Y, Z
CALL Nuts (Y=X, Z=1, X=Y)

Introduction to Modern Fortran – p. 36/??

Hiatus

That is most of the basics of procedures
Except for arrays and CHARACTER

Now might be a good time to do some examples
The first few questions cover the material so far

Introduction to Modern Fortran – p. 37/??

Assumed Shape Arrays (1)

• The best way to declare array arguments
You must declare procedures as above

• Specify all bounds as simply a colon (‘:’)
The rank must match the actual argument
The lower bounds default to one (1)
The upper bounds are taken from the extents

REAL, DIMENSION(:) :: vector
REAL, DIMENSION(:, :) :: matrix
REAL, DIMENSION(:, :, :) :: tensor

Introduction to Modern Fortran – p. 38/??

Example

SUBROUTINE Peculiar (vector, matrix)
REAL, DIMENSION(:), INTENT(INOUT) :: vector
REAL, DIMENSION(:, :), INTENT(IN) :: matrix
. . .

END SUBROUTINE Peculiar

REAL, DIMENSION(20:1000), :: one
REAL, DIMENSION(--5:100, --5:100) :: two
CALL Peculiar (one(101:160), two(21:, 26:75))

vector will be DIMENSION(1:60)
matrix will be DIMENSION(1:80, 1:50)

Introduction to Modern Fortran – p. 39/??

Assumed Shape Arrays (2)

Query functions were described earlier
SIZE, SHAPE, LBOUND and UBOUND

So you can write completely generic procedures

SUBROUTINE Init (matrix, scale)
REAL, DIMENSION(:, :), INTENT(OUT) :: matrix
INTEGER, INTENT(IN) :: scale
DO N = 1, UBOUND(matrix,2)

DO M = 1, UBOUND(matrix,1)
matrix(M, N) = scale*M + N

END DO
END DO

END SUBROUTINE Init

Introduction to Modern Fortran – p. 40/??

Cholesky Decomposition

SUBROUTINE CHOLESKY(A)
IMPLICIT NONE
INTEGER :: J, N
REAL, INTENT(INOUT) :: A(:, :), X
N = UBOUND(A, 1)
IF (N < 1 .OR. UBOUND(A, 2) /= N)

CALL Error("Invalid array passed to CHOLESKY")

DO J = 1, N
. . .

END DO
END SUBROUTINE CHOLESKY

Now I have added appropriate checking

Introduction to Modern Fortran – p. 41/??

Setting Lower Bounds

Even when using assumed shape arrays
you can set any lower bounds you want

• You do that in the called procedure

SUBROUTINE Orrible (vector, matrix, n)
REAL, DIMENSION(2*n+1:) :: vector

REAL, DIMENSION(0:, 0:) :: matrix
. . .

END SUBROUTINE Orrible

Introduction to Modern Fortran – p. 42/??

Warning

Argument overlap will not be detected
Not even for assumed shape arrays

• A common cause of obscure errors

No other language does much better

Introduction to Modern Fortran – p. 43/??

Explicit Array Bounds

In procedures, they are more flexible
Any reasonable integer expression is allowed

Essentially, you can use any ordinary formula
Using only constants and integer variables
Few programmers will ever hit the restrictions

The most common use is for workspace
But it applies to all array declarations

Introduction to Modern Fortran – p. 44/??

Automatic Arrays (1)

Local arrays with run--time bounds are called
automatic arrays

Bounds may be taken from an argument
Or a constant or variable in a module

SUBROUTINE aardvark (size)
USE sizemod ! This defines worksize
INTEGER, INTENT(IN) :: size

REAL, DIMENSION(1:worksize) :: array---1

REAL, DIMENSION(1:size*(size+1)) :: array---2

Introduction to Modern Fortran – p. 45/??

Automatic Arrays (2)

Another very common use is a ‘shadow’ array
i.e. one the same shape as an argument

SUBROUTINE pard (matrix)
REAL, DIMENSION(:, :) :: matrix

REAL, DIMENSION(UBOUND(matrix, 1), &
UBOUND(matrix, 2)) :: &

matrix---2, matrix---3

And so on – automatic arrays are very flexible

Introduction to Modern Fortran – p. 46/??

Explicit Shape Array Args (1)

We cover these because of their importance
They were the only mechanism in Fortran 77
• But, generally, they should be avoided

In this form, all bounds are explicit
They are declared just like automatic arrays
The dummy should match the actual argument
Making an error will usually cause chaos

• Only the very simplest uses are covered
There are more details in the extra slides

Introduction to Modern Fortran – p. 47/??

Explicit Shape Array Args (2)

You can use constants

SUBROUTINE Orace (matrix, array)
INTEGER, PARAMETER :: M = 5, N = 10
REAL, DIMENSION(1:M, 1:N) :: matrix
REAL, DIMENSION(1000) :: array
. . .

END SUBROUTINE Orace

INTEGER, PARAMETER :: M = 5, N = 10
REAL, DIMENSION(1:M, 1:N) :: table
REAL, DIMENSION(1000) :: workspace
CALL Orace(table, workspace)

Introduction to Modern Fortran – p. 48/??

Explicit Shape Array Args (3)

It is common to pass the bounds as arguments

SUBROUTINE Weeble (matrix, m, n)
INTEGER, INTENT(IN) :: m, n
REAL, DIMENSION(1:m, 1:n) :: matrix
. . .

END SUBROUTINE Weeble

You can use expressions, of course
• But it is not really recommended
Purely on the grounds of human confusion

Introduction to Modern Fortran – p. 49/??

Explicit Shape Array Args (4)

You can define the bounds in a module
Either as a constant or in a variable

SUBROUTINE Wobble (matrix)
USE sizemod ! This defines m and n
REAL, DIMENSION(1:m, 1:n) :: matrix
. . .

END SUBROUTINE Weeble

• The same remarks about expressions apply

Introduction to Modern Fortran – p. 50/??

Assumed Size Array Args

The last upper bound can be *
I.e. unknown, but assumed to be large enough

SUBROUTINE Weeble (matrix, n)
REAL, DIMENSION(n, *) :: matrix
. . .

END SUBROUTINE Weeble

• You will see this, but generally avoid it
It makes it very hard to locate bounds errors
It also implies several restrictions

Introduction to Modern Fortran – p. 51/??

Warnings

The size of the dummy array must not exceed
the size of the actual array argument

• Compilers will rarely detect this error

There are also some performance problems when
passing assumed shape and array sections
to explicit shape or assumed size dummies

That is in the advanced slides on procedures
Sorry – but it’s complicated to explain

Introduction to Modern Fortran – p. 52/??

Example (1)

We have a subroutine with an interface like:

SUBROUTINE Normalise (array, size)
INTEGER, INTENT(IN) :: size
REAL, DIMENSION(size) :: array

The following calls are correct:

REAL, DIMENSION(1:10) :: data

CALL Normalise (data, 10)
CALL Normalise (data(2:5), SIZE(data(2:5)))
CALL Normalise (data, 7)

Introduction to Modern Fortran – p. 53/??

Example (2)

SUBROUTINE Normalise (array, size)
INTEGER, INTENT(IN) :: size
REAL, DIMENSION(size) :: array

The following calls are not correct:

INTEGER, DIMENSION(1:10) :: indices
REAL :: var, data(10)

CALL Normalise (indices, 10) ! wrong base type
CALL Normalise (var, 1) ! not an array
CALL Normalise (data, 10.0) ! wrong type
CALL Normalise (data, 20) ! dummy array too big

Introduction to Modern Fortran – p. 54/??

Character Arguments

Few scientists do anything very fancy with these
See the advanced foils for anything like that

People often use a constant length
You can specify this as a digit string

Or define it using PARAMETER
That is best done in a module

Or define it as an assumed length argument

Introduction to Modern Fortran – p. 55/??

Explicit Length Character (1)

The dummy should match the actual argument
You are likely to get confused if it doesn’t

SUBROUTINE sorter (list)
CHARACTER(LEN=8), DIMENSION(:) :: list
. . .

END SUBROUTINE sorter

CHARACTER(LEN=8) :: data(1000)
. . .
CALL sorter(data)

Introduction to Modern Fortran – p. 56/??

Explicit Length Character (2)

MODULE Constants
INTEGER, PARAMETER :: charlen = 8

END MODULE Constants

SUBROUTINE sorter (list)
USE Constants

CHARACTER(LEN=charlen), DIMENSION(:) :: list
. . .

END SUBROUTINE sorter

USE Constants
CHARACTER(LEN=charlen) :: data(1000)
CALL sorter(data)

Introduction to Modern Fortran – p. 57/??

Assumed Length CHARACTER

A CHARACTER length can be assumed
The length is taken from the actual argument

You use an asterisk (*) for the length

It acts very like an assumed shape array

Note that it is a property of the type
It is independent of any array dimensions

Introduction to Modern Fortran – p. 58/??

Example (1)

FUNCTION is---palindrome (word)

LOGICAL :: is---palindrome

CHARACTER(LEN=*), INTENT(IN) :: word

INTEGER :: N, I

is---palindrome = .False.
N = LEN(word)

comp: DO I = 1, (N--1)/2
IF (word(I:I) /= word(N+1--I:N+1--I)) THEN

RETURN
END IF

END DO comp
is---palindrome = .True.

END FUNCTION is---palindrome

Introduction to Modern Fortran – p. 59/??

Example (2)

Such arguments do not have to be read--only

SUBROUTINE reverse---word (word)

CHARACTER(LEN=*), INTENT(INOUT) :: word

CHARACTER(LEN=1) :: c
N = LEN(word)
DO I = 1, (N--1)/2

c = word(I:I)
word(I:I) = word(N+1--I:N+1--I)
word(N+1--I:N+1--I) = c

END DO
END SUBROUTINE reverse---word

Introduction to Modern Fortran – p. 60/??

Character Workspace

The rules are very similar to those for arrays
The length can be an almost arbitrary expression
But it usually just shadows an argument

SUBROUTINE sort---words (words)

CHARACTER(LEN=*) :: words(:)

CHARACTER(LEN=LEN(words)) :: temp
. . .

END SUBROUTINE sort---words

Introduction to Modern Fortran – p. 61/??

Character Valued Functions

Functions can return CHARACTER values
Fixed--length ones are the simplest

FUNCTION truth (value)
IMPLICIT NONE
CHARACTER(LEN=8) :: truth
LOGICAL, INTENT(IN) :: value
IF (value) THEN

truth = ’.True.’
ELSE

truth = ’.False.’
END IF

END FUNCTION truth

Introduction to Modern Fortran – p. 62/??

Example

SUBROUTINE diagnose (message, value)
CHARACTER(LEN=*), INTENT(IN) :: message

REAL :: value
PRINT *, message, value

END SUBROUTINE diagnose

CALL diagnose("Horrible failure",determinant)

Introduction to Modern Fortran – p. 63/??

Static Data

Sometimes you need to store values locally
Use a value in the next call of the procedure

• You do this with the SAVE attribute
Initialised variables get that automatically
It is good practice to specify it anyway

The best style avoids most such use
It can cause trouble with parallel programming
But it works, and lots of programs rely on it

Introduction to Modern Fortran – p. 64/??

Example

This is a futile example, but shows the feature

SUBROUTINE Factorial (result)
IMPLICIT NONE
REAL, INTENT(OUT) :: result
REAL, SAVE :: mult = 1.0, value = 1.0
mult = mult+1.0
value = value*mult

result = value
END SUBROUTINE Factorial

Introduction to Modern Fortran – p. 65/??

Warning

Omitting SAVE will usually appear to work
But even a new compiler version may break it
As will increasing the level of optimisation

• Decide which variables need it during design

• Always use SAVE if you want it
And preferably never when you don’t!

• Never assume it without specifying it

Introduction to Modern Fortran – p. 66/??

Warning for C/C++ Users

Initialisation without SAVE initialises once
It does NOT reinitialise each time it is called

• It can’t be done using Fortran initialisation
Do it using an explicit assignment statement

Introduction to Modern Fortran – p. 67/??

Delayed Until Modules

Sometimes you need to share global data
It’s trivial, and can be done very cleanly

Procedures can be passed as arguments
This is a very important facility for some people
For historical reasons, this is a bit messy

• However, internal procedures can’t be
They can be in Fortran 2008 – i.e. shortly

We will cover both of these under modules
It just happens to be simplest that way!

Introduction to Modern Fortran – p. 68/??

Other Features

There is a lot that we haven’t covered
We will return to some of it later

• The above covers the absolute basics
Plus some other features you need to know

• Be a bit cautious when using other features
Some have been omitted because of ‘‘gotchas’’

• And I have over--simplified a few areas

Introduction to Modern Fortran – p. 69/??

Extra Slides

Topics in the advanced slides on procedures

• Argument association and updating
• The semantics of function calls
• Optional arguments
• Array-- and character--valued functions
• Mixing explicit and assumed shape arrays
• Array arguments and sequence association
• Miscellaneous other points

Introduction to Modern Fortran – p. 70/??

Omissions

Rather a lot has been omitted here, unfortunately
It’s there in the notes, if you are interested

If you think that Fortran can’t do it, look deeper
Sorry about that, but this had to be simplified

Introduction to Modern Fortran – p. 71/??

	Sub-Dividing The Problem
	What Fortran Provides
	Example -- Cholesky (1)
	Example -- Cholesky (2)
	Example -- Variance
	Example -- Sorting (1)
	Example -- Sorting (2)
	CALL Statement
	SUBROUTINE Statement
	Subroutines With No Arguments
	Statement Order
	Dummy Arguments
	Argument Matching
	Functions
	Example (1)
	Example (2)
	Functions With No Arguments
	Internal Procedures (1)
	Internal Procedures (2)
	Internal Procedures (3)
	Name Inheritance (1)
	Name Inheritance (2)
	Using Procedures
	INTENT (1)
	INTENT (2)
	INTENT (3)
	Example
	Aliasing
	PURE Functions
	Example
	ELEMENTAL Functions
	Keyword Arguments (1)
	Keyword Arguments (2)
	Keyword Arguments (3)
	Keyword Reminder
	Hiatus
	Assumed Shape Arrays (1)
	Example
	Assumed Shape Arrays (2)
	Cholesky Decomposition
	Setting Lower Bounds
	Warning
	Explicit Array Bounds
	Automatic Arrays (1)
	Automatic Arrays (2)
	Explicit Shape Array Args (1)
	Explicit Shape Array Args (2)
	Explicit Shape Array Args (3)
	Explicit Shape Array Args (4)
	Assumed Size Array Args
	Warnings
	Example (1)
	Example (2)
	Character Arguments
	Explicit Length Character (1)
	Explicit Length Character (2)
	Assumed Length CHARACTER
	Example (1)
	Example (2)
	Character Workspace
	Character Valued Functions
	Example
	Static Data
	Example
	Warning
	Warning for C/C++ Users
	Delayed Until Modules
	Other Features
	Extra Slides
	Omissions

