Introduction to Modern Fortran
KIND, Precision and COMPLEX

Nick Maclaren

March 2014

The Basic Problem

REAL must be same size as INTEGER
This is for historical reasons — ask if you care

bits allows integers of up to
Usually plenty for individual array indices

But floating—point precision is only 6 digits
And its range is only

Index values are not exact in floating—point
And there are many, serious numerical problems

Example

REAL, DIMENSION(20000000) :: A
REAL :: X

X = SIZE(A)-1

PRINT *, X

Prints 20000000.0 — which is not right
That code needs only to go wrong

See “
Mainly on the numerical aspects

Ordinary REAL Constants

These will often do what you expect
But they will very often lose precision

0,7.0,0.25, 1.23, 1.23E12,
1, 1

0.
0. .0E-1, 3.141592653589793

p/

Only the first three will do what you expect

In old Fortran constructs, can cause chaos
E.g. as arguments to external libraries

KIND Values

You can get the KIND of any expression

KIN
KIN
KIN

D(var) is the KIND value of var
)(0.0) is the KIND value of REAL

)(0.0D0) is that of DOUBLE PRECISION
This i1s described in a moment

Implementation-dependent integer values

selecting the type (e.g. a specific REAL)

Don’t use integer constants directly

SELECTED REAL KIND

You can request a minimum precision and range
Both are specified in decimal

SELECTED_REAL_KIND (Prec[, Range])

This gives at least Prec decimal places
and range 10 ftenge _ ot tange

E.g. SELECTED_REAL_KIND(12)
at least 12 decimal places

Warning: Time Warp

Unfortunately, we need to define a module
We shall cover those quite a lot later

The one we shall define is trivial
Just use it, and don’t worry about the details
Everything you need to know will be explained

Just compile it, but don’t link it, using —c
nagfor —C=all -c double.f90

Using KIND (1)

You should write and compile a module

MODULE double
INTEGER, PARAMETER :: DP = &
SELECTED_REAL_KIND(12)

END MODULE double

Immediately after every procedure statement
I.e. PROGRAM, SUBROUTINE or FUNCTION

USE double
IMPLICIT NONE

Using KIND (2)

Declaring variables etc. is easy

REAL(KIND=DP) :: a, b, ¢
REAL(KIND=DP), DIMENSION(10) :: X, V,

Using constants is more tedious, but easy

0.0_DP, 7.0_DP, 0.25_DP, 1.23_DP, 1.23E12_DP,
0.1_DP, 1.0E-1_DP, 3.141592653589793_DP

That’s really all you need to know . . .

Using KIND (3)

Note that the above makes it trivial to change
ALL you need is to change the module

MODULE double

INTEGER, PARAMETER :: DP = &
SELECTED_REAL_KIND(15, 300)

END MODULE double
(15, 300) requires IEEE 754 double or better

Or even: SELECTED_REAL_KIND(25, 1000)

DOUBLE PRECISION (1)

The best way to control precision
Most flexible, portable and future—proof
Advisable if you may want to use HECToR

All older (Fortran 77) code will do it differently
And quite a lot of programmers still do
The old method is fairly reliable, today

You need to know about this, but avoid it

DOUBLE PRECISION (2)

DOUBLE PRECISION takes the space of 2 REALSs
= It need not be any more accurate, though

®* Almost always, REAL is 32-bit IEEE 754
And DOUBLE PRECISION is 64-bit IEEE 754
Precision is 15 digits, range is 102" — 107209

Main exception is Cray vector supercomputers
And when using compiler options to change precision

DOUBLE PRECISION (3)

You can use it just like REAL in declarations
Using KIND is more modern and compact

REAL(KIND=KIND(0.0D0)) :: a, b, ¢
Constants use D for the exponent — 1.23D12 or 0.0D0

REAL(KIND=KIND(0.0D0)) :: a, b, ¢
DOUBLE PRECISION, DIMENSION(10) :: X, V,

0.0D0, 7.0D0, 0.25D0, 1.23D0, 1.23D12,
0.1D0, 1.0D-1, 3.141592653589793D0

Intrinsic Procedures

Almost all intrinsics ‘just work’ (i.e. are generic)
IMPLICIT NONE removes most common traps

Avoid specific (old) names for procedures
AMAXO0, DMIN1, DSQRT, FLOAT, IFIX etc.

DPROD is also not generic — use a library
Don’t use the INTRINSIC statement

Don’t pass intrinsic functions as arguments

Type Conversion (1)

This is the main “ "’ —you should use

REAL(KIND=DP) :: x
X = REAL(<integer expression>, KIND=DP)

Omitting the KIND=DP may lose precision
With no warning from the compiler

Automatic conversion is actually safer!

X = <integer expression>
X = SQRT(<integer expression>+0.0_DP)

Type Conversion (2)

There Is a legacy intrinsic function
If you are using explicit DOUBLE PRECISION

X = DBLE(<integer expression>)

All other ““gotchas” are for COMPLEX

Warning

You will often see code like:
REAL*8 X, Y, Z
INTEGER*8 M, N
Most of the Web and many books are wrong

A Fortran IV feature, NOT a standard one
‘8" is NOT always the size in bytes

I strongly recommend converting to KIND

Old Fortran Libraries

Be very careful with external libraries

Make sure argument types are right
Automatic conversion does not happen
Not will you get a diagnostic (in general)

Any procedure with no explicit interface
I did say that using old Fortran was more painful

INTEGER KIND

You can choose different sizes of integer

INTEGER, PARAMETER :: big = &
SELECTED_INT_KIND(12)

INTEGER(KIND=big) :: bignum

bignum can hold values of up to at least
Few users will need this — mainly for OpenMP

Some compilers may allocate smaller integers
E.g. by using SELECTED_INT_KIND(4)

CHARACTER KIND

It can be used to select the encoding
It is mainly a Fortran 2003 feature

Can select default, ASCII or ISO 10646
ISO 10646 is effectively Unicode
Useful for handling non-ASCII character sets

It iIs not covered in this course
Very few scientists want or use it

Complex Arithmetic

Fortran is the answer — what was the question?
Has always been supported, and well integrated

COMPLEX is a pair of REAL
It uses the same KIND as underlying reals

COMPLEX(KIND=DP) :: ¢
¢ = (1.23_DP,4.56_DP)

Full range of operations, intrinsic functions etc.

Example

COMPLEX(KIND=DP) :: ¢, d, e, f

c =(1.23_DP,4.56_DP)*CONJG(d)+SIN(f*g)
e = EXP(d+c/f)*ABS(LOG(e))

The functions are the complex forms
E.g. ABS s
CONJG is complex conjugate, of course

Using COMPLEX really IS that simple!

Worst “Gotcha”

Must specify KIND in conversion function

¢ = CMPLX(<X-expr>, KIND=DP)
¢ = CMPLX(<X-expr>, <Y-expr>, KIND=DP)

This will not work — KIND is default REAL
Usually with no warning from the compiler

c = CMPLX(0.1_DP,0.2_DP)

Conversion to REAL

REAL(KIND=DP) :: x

COMPLEX(KIND=DP) :: c
. . . lots of statements . . .

X = X+C

c=2.0_DP*x

Loses the imaginary part, without warning
Almost all modern languages do the same

A Warning for Old Code

C = DCMPLX(0.1_DP, 0.1_DP)

That is often seen in Fortran IV legacy code
It doesn’t work in standard (modern) Fortran

* It will be caught by IMPLICIT NONE

Complex 1/0

The form of I/O we have used is list-directed
COMPLEX does what you would expect

COMPLEX(KIND=DP) :: ¢ = (1.23_DP,4.56_DP)
WRITE (*, *) C

Prints “(1.23,4.56)”
And similarly for input

There is some more on COMPLEX 1/0 later

Exceptions

Complex exceptions are mathematically hard

Overflow often does what you won’t expect
Fortran, unfortunately, is no exception to this
See L€ 3)

Don’t cause them in the first place

Use the techniques described to detect them

	The Basic Problem
	Example
	Ordinary REAL Constants
	KIND Values
	SELECTED_REAL_KIND
	Warning: Time Warp
	Using KIND (1)
	Using KIND (2)
	Using KIND (3)
	DOUBLE PRECISION (1)
	DOUBLE PRECISION (2)
	DOUBLE PRECISION (3)
	Intrinsic Procedures
	Type Conversion (1)
	Type Conversion (2)
	Warning
	Old Fortran Libraries
	INTEGER KIND
	CHARACTER KIND
	Complex Arithmetic
	Example
	Worst ``Gotcha''
	Conversion to REAL
	A Warning for Old Code
	Complex I/O
	Exceptions

