
Introduction to Modern Fortran

Modules and Interfaces

Nick Maclaren

nmm1@cam.ac.uk

March 2014

Introduction to Modern Fortran – p. 1/??

Module Summary

• Similar to same term in other languages
As usual, modules fulfil multiple purposes

• For shared declarations (i.e. ‘‘headers’’)

• Defining global data (old COMMON)

• Defining procedure interfaces

• Semantic extension (described later)

And more ...

Introduction to Modern Fortran – p. 2/??

Use Of Modules

• Think of a module as a high--level interface
Collects <whatevers> into a coherent unit

• Design your modules carefully
As the ultimate top--level program structure
Perhaps only a few, perhaps dozens

• Good place for high--level comments
Please document purpose and interfaces

Introduction to Modern Fortran – p. 3/??

Module Interactions

Modules can USE other modules
Dependency graph shows visibility /usage

• Modules may not depend on themselves
Languages that allow that are very confusing

Can do anything you are likely to get to work

• If you need to do more, ask for advice

Introduction to Modern Fortran – p. 4/??

Module Dependencies

double

workspace

parameters

Main
Program

Introduction to Modern Fortran – p. 5/??

Module Dependencies

Program

Introduction to Modern Fortran – p. 6/??

Module Structure

MODULE <name>
Static (often exported) data definitions

CONTAINS
Procedure definitions (i.e. their code)

END MODULE <name>

Files may contain several modules
Modules may be split across many files

• For simplest use, keep them 1≡1

Introduction to Modern Fortran – p. 7/??

IMPLICIT NONE

Add MODULE to the places where you use this

MODULE double
IMPLICIT NONE
INTEGER, PARAMETER :: DP = KIND(0.0D0)

END MODULE double

MODULE parameters
USE double
IMPLICIT NONE
REAL(KIND=DP), PARAMETER :: one = 1.0---DP

END MODULE parameters

Introduction to Modern Fortran – p. 8/??

Reminder

I do not always do it, because of space

Introduction to Modern Fortran – p. 9/??

Example (1)

MODULE double
INTEGER, PARAMETER :: DP = KIND(0.0D0)

END MODULE double

MODULE parameters
USE double
REAL(KIND=DP), PARAMETER :: one = 1.0---DP

INTEGER, PARAMETER :: NX = 10, NY = 20
END MODULE parameters

MODULE workspace
USE double ; USE parameters

REAL(KIND=DP), DIMENSION(NX, NY) :: now, then
END MODULE workspace

Introduction to Modern Fortran – p. 10/??

Example (2)

The main program might use them like this

PROGRAM main
USE double
USE parameters
USE workspace
. . .

END PROGRAM main

• Could omit the USE double and USE parameters
They would be inherited through USE workspace

Introduction to Modern Fortran – p. 11/??

Shared Constants

We have already seen and used this:

MODULE double
INTEGER, PARAMETER :: DP = KIND(0.0D0)

END MODULE double

You can do a great deal of that sort of thing

• Greatly improves clarity and maintainability
The larger the program, the more it helps

Introduction to Modern Fortran – p. 12/??

Example

MODULE hotchpotch
INTEGER, PARAMETER :: DP = KIND(0.0D0)
REAL(KIND=DP), PARAMETER :: &

pi = 3.141592653589793---DP, &

e = 2.718281828459045---DP

CHARACTER(LEN=*), PARAMETER :: &

messages(3) = &
(\ "Hello", "Goodbye", "Oh, no!" \)

INTEGER, PARAMETER :: stdin = 5, stdout = 6
REAL(KIND=DP), PARAMETER, &

DIMENSION(0:100, --1:25, 1:4) :: table = &
RESHAPE((/ . . . /), (/ 101, 27, 4 /))

END MODULE hotchpotch

Introduction to Modern Fortran – p. 13/??

Global Data

Variables in modules define global data
These can be fixed--size or allocatable arrays

• You need to specify the SAVE attribute
Set automatically for initialised variables
But it is good practice to do it explicitly

A simple SAVE statement saves everything
• That isn’t always the best thing to do

Introduction to Modern Fortran – p. 14/??

Example (1)

MODULE state---variables

INTEGER, PARAMETER :: nx=100, ny=100
REAL, DIMENSION(NX, NY), SAVE :: &

current, increment, values
REAL, SAVE :: time = 0.0

END MODULE state---variables

USE state---variables

IMPLICIT NONE
DO

current = current + increment
CALL next---step(current, values)

END DO

Introduction to Modern Fortran – p. 15/??

Example (2)

This is equivalent to the previous example

MODULE state---variables

IMPLICIT NONE
SAVE
INTEGER, PARAMETER :: nx=100, ny=100
REAL, DIMENSION(NX, NY) :: &

current, increment, values
REAL :: time = 0.0

END MODULE state---variables

Introduction to Modern Fortran – p. 16/??

Example (3)

The sizes do not have to be fixed

MODULE state---variables

REAL, DIMENSION(:, :), ALLOCATABLE, &
SAVE :: current, increment, values

END MODULE state---variables

USE state---variables

IMPLICIT NONE
INTEGER :: NX, NY
READ *, NX, NY

ALLOCATE (current(NX, NY), increment(NX, NY), &
values(NX, NY))

Introduction to Modern Fortran – p. 17/??

Use of SAVE

If a variable is set in one procedure
and then it is used in another

• You must specify the SAVE attribute

• If not, very strange things may happen
If will usually ‘‘work’’, under most compilers
A new version will appear, and then it won’t

• Applies if the association is via the module
Not when it is passed as an argument

Introduction to Modern Fortran – p. 18/??

Example (1)

MODULE status
REAL :: state

END MODULE status

SUBROUTINE joe
USE status
state = 0.0

END SUBROUTINE joe

SUBROUTINE alf (arg)
REAL :: arg
arg = 0.0

END SUBROUTINE alf

Introduction to Modern Fortran – p. 19/??

Example (2)

SUBROUTINE fred
USE status

CALL joe
PRINT *, state ! this is UNDEFINED

CALL alf(state)
PRINT *, state ! this is defined to be 0.0

END SUBROUTINE fred

Introduction to Modern Fortran – p. 20/??

Shared Workspace

Shared scratch space can be useful for HPC
It can avoid excessive memory fragmentation

You can omit SAVE for simple scratch space
This can be significantly more efficient

• Design your data use carefully
Separate global scratch space from storage
And use them consistently and correctly

• This is good practice in any case

Introduction to Modern Fortran – p. 21/??

Module Procedures (1)

Procedures now need explicit interfaces
E.g. for assumed shape or keywords
Without them, must use Fortran 77 interfaces

• Modules are the primary way of doing this
We will come to the secondary one later

Simplest to include the procedures in modules
The procedure code goes after CONTAINS
This is what we described earlier

Introduction to Modern Fortran – p. 22/??

Example

MODULE mymod
CONTAINS

FUNCTION Variance (Array)
REAL :: Variance, X

REAL, INTENT(IN), DIMENSION(:) :: Array

X = SUM(Array)/SIZE(Array)
Variance = SUM((Array--X)**2)/SIZE(Array)

END FUNCTION Variance
END MODULE mymod

PROGRAM main
USE mymod
. . .
PRINT *, ’Variance = ’, Variance(array)

Introduction to Modern Fortran – p. 23/??

Module Procedures (2)

• Modules can contain any number of procedures

• You can use any number of modules

PROGRAM main
USE mymod
REAL, DIMENSION(10) :: array
PRINT *, ’Type 10 values’
READ *, array

PRINT *, ’Variance = ’, Variance(array)

END PROGRAM main

Introduction to Modern Fortran – p. 24/??

Using Procedures

Internal procedures or module procedures?
Use either technique for solving test problems

• They are the best techniques for real code
Simplest, and give full access to functionality
We will cover some other ones later

• Note that, if a procedure is in a module
it may still have internal procedures

Introduction to Modern Fortran – p. 25/??

Example

MODULE mymod
CONTAINS

SUBROUTINE Sorter (array, opts)
. . .

CONTAINS
FUNCTION Compare (value1, value2, flags)

. . .
END FUNCTION Compare
SUBROUTINE Swap (loc1, loc2)

. . .
END FUNCTION Swap

END SUBROUTINE Sorter
END MODULE mymod

Introduction to Modern Fortran – p. 26/??

Procedures in Modules (1)

That is including all procedures in modules
Works very well in almost all programs

• There really isn’t much more to it

It doesn’t handle very large modules well
Try to avoid designing those, if possible

It also doesn’t handle procedure arguments
Unfortunately, doing that has had to be omitted

Introduction to Modern Fortran – p. 27/??

Procedures in Modules (2)

They are very like internal procedures

Everything accessible in the module
can also be used in the procedure

Again, a local name takes precedence
But reusing the same name is very confusing

Introduction to Modern Fortran – p. 28/??

Procedures in Modules (3)

MODULE thing
INTEGER, PARAMETER :: temp = 123

CONTAINS
SUBROUTINE pete ()

INTEGER, PARAMETER :: temp = 456
PRINT *, temp

END SUBROUTINE pete
END MODULE thing

Will print 456, not 123
Avoid doing this – it’s very confusing

Introduction to Modern Fortran – p. 29/??

Derived Type Definitions

We shall cover these later:

MODULE Bicycle
TYPE Wheel

INTEGER :: spokes
REAL :: diameter, width
CHARACTER(LEN=15) :: material

END TYPE Wheel
END MODULE Bicycle

USE Bicycle
TYPE(Wheel) :: w1

Introduction to Modern Fortran – p. 30/??

Compiling Modules (1)

This is a FAQ – Frequently Asked Question
The problem is the answer isn’t simple

• That is why I give some of the advice that I do

The following advice will not always work
OK for most compilers, but not necessarily all

• This is only the Fortran module information

Introduction to Modern Fortran – p. 31/??

Compiling Modules (2)

The module name need not be the file name
Doing that is strongly recommended, though

• You can include any number of whatevers

You now compile it, but don’t link it
nagfor –C=all –c mymod.f90

It will create files like mymod.mod and mymod.o
They contain the interface and the code

Will describe the process in more detail later

Introduction to Modern Fortran – p. 32/??

Using Compiled Modules

All the program needs is the USE statements

• Compile all of the modules in a dependency order
If A contains USE B, compile B first

• Then add a *.o for every module when linking

nagfor --C=all --o main main.f90 mymod.o

nagfor --C=all --o main main.f90 \
mod---a.o mod---b.o mod---c.o

Introduction to Modern Fortran – p. 33/??

Take a Breather

That is most of the basics of modules
Except for interfaces and access control

The first question covers the material so far

The remainder is important and useful
But it is unfortunately rather more complicated

Introduction to Modern Fortran – p. 34/??

What Are Interfaces?

The FUNCTION or SUBROUTINE statement
And everything directly connected to that
USE if needed for argument declarations
• And don’t forget a function result declaration

Strictly, the argument names are not part of it
You are strongly advised to keep them the same
Which keywords if the interface and code differ?

Actually, it’s the ones in the interface

Introduction to Modern Fortran – p. 35/??

Interface Blocks

These start with an INTERFACE statement
Include any number of procedure interfaces
And end with an END INTERFACE statement

INTERFACE
SUBROUTINE Fred (arg)

REAL :: arg

END FUNCTION Fred
FUNCTION Joe ()

LOGICAL :: Joe
END FUNCTION Joe

END INTERFACE

Introduction to Modern Fortran – p. 36/??

Example

SUBROUTINE CHOLESKY (A) ! this is part of it
USE errors ! this ISN’T part of it

USE double ! this is, because of A

IMPLICIT NONE ! this ISN’T part of it

INTEGER :: J, N ! this ISN’T part of it

REAL(KIND=dp) :: A(:, :), X ! A is but not X
. . .

END SUBROUTINE CHOLESKY

INTERFACE
SUBROUTINE CHOLESKY (A)

USE double
REAL(KIND=dp) :: A(:, :)

END SUBROUTINE CHOLESKY
END INTERFACE

Introduction to Modern Fortran – p. 37/??

Interfaces In Procedures

Can use an interface block as a declaration
Provides an explicit interface for a procedure

Can be used for ordinary procedure calls
But using modules is almost always better

• It is essential for procedure arguments
Can’t put a dummy argument name in a module!

More on this in the Make and Linking lecture

Introduction to Modern Fortran – p. 38/??

Example (1)

Assume this is in module application

FUNCTION apply (arr, func)
REAL :: apply, arr(:)
INTERFACE

FUNCTION func (val)
REAL :: func, val

END FUNCTION
END INTERFACE
apply = 0.0
DO I = 1,UBOUND(arr, 1)

apply = apply + func(val = arr(i))
END DO

END FUNCTION apply

Introduction to Modern Fortran – p. 39/??

Example (2)

And these are in module functions

FUNCTION square (arg)
REAL :: square, arg
square = arg**2

END FUNCTION square

FUNCTION cube (arg)
REAL :: cube, arg
cube = arg**3

END FUNCTION cube

Introduction to Modern Fortran – p. 40/??

Example (3)

PROGRAM main
USE application
USE functions

REAL, DIMENSION(5) :: A = (/ 1.0, 2.0, 3.0, 4.0, 5.0 /)
PRINT *, apply(A,square)

PRINT *, apply(A,cube)

END PROGRAM main

Will produce something like:

55.0000000
2.2500000E+02

Introduction to Modern Fortran – p. 41/??

Interface Bodies and Names (1)

An interface body does not import names
The reason is that you can’t undeclare names

For example, this does not work as expected:

USE double ! This doesn’t help

INTERFACE
FUNCTION square (arg)

REAL(KIND=dp) :: square, arg
END FUNCTION square

END INTERFACE

Introduction to Modern Fortran – p. 42/??

Interface Bodies and Names (2)

So there is another statement to import names:

USE double
INTERFACE

FUNCTION square (arg)
IMPORT :: dp ! This solves it
REAL(KIND=dp) :: square, arg

END FUNCTION square
END INTERFACE

It is available only in interface bodies

Introduction to Modern Fortran – p. 43/??

Accessibility (1)

Can separate exported from hidden definitions

Fairly easy to use in simple cases
• Worth considering when designing modules

PRIVATE names accessible only in module
I.e. in module procedures after CONTAINS

PUBLIC names are accessible by USE
This is commonly called exporting them

Introduction to Modern Fortran – p. 44/??

Accessibility (2)

They are just another attribute of declarations

MODULE fred
REAL, PRIVATE :: array(100)
REAL, PUBLIC :: total
INTEGER, PRIVATE :: error---count

CHARACTER(LEN=50), PUBLIC :: excuse
CONTAINS

. . .
END MODULE fred

Introduction to Modern Fortran – p. 45/??

Accessibility (3)

PUBLIC/PRIVATE statement sets the default
The default default is PUBLIC

MODULE fred
PRIVATE
REAL :: array(100)
REAL, PUBLIC :: total

CONTAINS
. . .

END MODULE fred

Only TOTAL is accessible by USE

Introduction to Modern Fortran – p. 46/??

Accessibility (4)

You can specify names in the statement
Especially useful for included names

MODULE workspace
USE double
PRIVATE :: DP
REAL(KIND=DP), DIMENSION(1000) :: scratch

END MODULE workspace

DP is no longer exported via workspace

Introduction to Modern Fortran – p. 47/??

Partial Inclusion (1)

You can include only some names in USE

USE bigmodule, ONLY : errors, invert

Makes only errors and invert visible
However many names bigmodule exports

Using ONLY is good practice
Makes it easier to keep track of uses

Can find out what is used where with grep

Introduction to Modern Fortran – p. 48/??

Partial Inclusion (2)

• One case when it is strongly recommended
When using USE in modules

• All included names are exported
Unless you explicitly mark them PRIVATE

• Ideally, use both ONLY and PRIVATE
Almost always, use at least one of them

• Another case when it is almost essential
Is if you don’t use IMPLICIT NONE religiously

Introduction to Modern Fortran – p. 49/??

Partial Inclusion (3)

If you don’t restrict exporting and importing:

A typing error could trash a module variable

Or forget that you had already used the name
In another file far, far away ...

• The resulting chaos is almost unfindable
From bitter experience – in Fortran and C!

Introduction to Modern Fortran – p. 50/??

Example (1)

MODULE settings
INTEGER, PARAMETER :: DP = KIND(0.0D0)
REAL(KIND=DP) :: Z = 1.0---DP

END MODULE settings

MODULE workspace
USE settings
REAL(KIND=DP), DIMENSION(1000) :: scratch

END MODULE workspace

Introduction to Modern Fortran – p. 51/??

Example (2)

PROGRAM main
IMPLICIT NONE
USE workspace
Z = 123
. . .

END PROGRAM main

• DP is inherited, which is OK

• Did you mean to update Z in settings?

No problem if workspace had used ONLY : DP

Introduction to Modern Fortran – p. 52/??

Example (3)

The following are better and best

MODULE workspace
USE settings, ONLY : DP
REAL(KIND=DP), DIMENSION(1000) :: scratch

END MODULE workspace

MODULE workspace
USE settings, ONLY : DP
PRIVATE :: DP
REAL(KIND=DP), DIMENSION(1000) :: scratch

END MODULE workspace

Introduction to Modern Fortran – p. 53/??

Renaming Inclusion (1)

You can rename a name when you include it

WARNING: this is footgun territory
[i.e. point gun at foot; pull trigger]

This technique is sometimes incredibly useful
• But is always incredibly dangerous

Use it only when you really need to
And even then as little as possible

Introduction to Modern Fortran – p. 54/??

Renaming Inclusion (2)

MODULE corner
REAL, DIMENSION(100) :: pooh

END MODULE corner

PROGRAM house
USE corner, sanders => pooh
INTEGER, DIMENSION(20) :: pooh
. . .

END PROGRAM house

pooh is accessible under the name sanders
The name pooh is the local array

Introduction to Modern Fortran – p. 55/??

Why Is This Lethal?

MODULE one
REAL :: X

END MODULE one

MODULE two
USE one, Y => X
REAL :: Z

END MODULE two

PROGRAM three
USE one ; USE two
! Both X and Y refer to the same variable

END PROGRAM three

Introduction to Modern Fortran – p. 56/??

Interfaces and Access Control

These are things that have been omitted
They’re there in the notes, if you are interested

They are extremely important for large programs
But time is too tight to teach them now

• Do only the first practical and skip the rest

Introduction to Modern Fortran – p. 57/??

	Module Summary
	Use Of Modules
	Module Interactions
	Module Structure
	IMPLICIT NONE
	Reminder
	Example (1)
	Example (2)
	Shared Constants
	Example
	Global Data
	Example (1)
	Example (2)
	Example (3)
	Use of SAVE
	Example (1)
	Example (2)
	Shared Workspace
	Module Procedures (1)
	Example
	Module Procedures (2)
	Using Procedures
	Example
	Procedures in Modules (1)
	Procedures in Modules (2)
	Procedures in Modules (3)
	Derived Type Definitions
	Compiling Modules (1)
	Compiling Modules (2)
	Using Compiled Modules
	Take a Breather
	What Are Interfaces?
	Interface Blocks
	Example
	Interfaces In Procedures
	Example (1)
	Example (2)
	Example (3)
	Interface Bodies and Names (1)
	Interface Bodies and Names (2)
	Accessibility (1)
	Accessibility (2)
	Accessibility (3)
	Accessibility (4)
	Partial Inclusion (1)
	Partial Inclusion (2)
	Partial Inclusion (3)
	Example (1)
	Example (2)
	Example (3)
	Renaming Inclusion (1)
	Renaming Inclusion (2)
	Why Is This Lethal?
	Interfaces and Access Control

