
Introduction to Modern Fortran

Derived Types

Nick Maclaren

nmm1@cam.ac.uk

March 2014

Introduction to Modern Fortran – p. 1/??

Summary

There is one important new feature to cover

It is not complicated, as we shall do it
• But we won’t cover it in great depth

Doing it fully would be a course in itself
The same applies in other languages, too

Introduction to Modern Fortran – p. 2/??

What Are Derived Types?

As usual, a hybrid of two, unrelated concepts
C++, Python etc. are very similar

• One is structures – i.e. composite objects
Arbitrary types, statically indexed by name

• The other is user--defined types
Often called semantic extension
This is where object orientation comes in

• This course will describe only the former

Introduction to Modern Fortran – p. 3/??

Why Am I Wimping Out?

Fortran 2003 has really changed this
full object orientation
semantic extension
polymorphism (abstract types)
and lots more

The course was already getting too big
And, yes, I was getting sick of writing it!

This area justifies a separate course
About one day or two afternoons, not three days
Please ask if you would like it written

Introduction to Modern Fortran – p. 4/??

Simple Derived Types

TYPE :: Wheel
INTEGER :: spokes
REAL :: diameter, width
CHARACTER(LEN=15) :: material

END TYPE Wheel

That defines a derived type Wheel
Using derived types needs a special syntax

TYPE(Wheel) :: w1

Introduction to Modern Fortran – p. 5/??

More Complicated Ones

You can include almost anything in there

TYPE :: Bicycle
CHARACTER(LEN=80) :: description(100)
TYPE(Wheel) :: front, back
REAL, ALLOCATABLE, DIMENSION(:) :: times
INTEGER, DIMENSION(100) :: codes

END TYPE Bicycle

And so on ...

Introduction to Modern Fortran – p. 6/??

Fortran 95 Restriction

Fortran 95 was much more restrictive
You couldn’t have ALLOCATABLE arrays
You had to use POINTER instead

Fortran 2003 removed that restriction
You may come across POINTER in old code
It can usually be replace by ALLOCATABLE

Ask if you hit problems and want to check

Introduction to Modern Fortran – p. 7/??

Component Selection

The selector ‘%’ is used for this
Followed by a component of the derived type

It delivers whatever type that field is
You can then subscript or select it

TYPE(Bicycle) :: mine

mine%times(52:53) = (/ 123.4, 98.7 /)
PRINT *, mine%front%spokes

Introduction to Modern Fortran – p. 8/??

Selecting from Arrays

You can select from arrays and array sections
It produces an array of that component alone

TYPE :: Rabbit
CHARACTER(LEN=16) :: variety
REAL :: weight, length
INTEGER :: age

END TYPE Rabbit
TYPE(Rabbit), DIMENSION(100) :: exhibits
REAL, DIMENSION(50) :: fattest

fattest = exhibits(51:)%weight

Introduction to Modern Fortran – p. 9/??

Assignment (1)

You can assign complete derived types
That copies the value element--by--element

TYPE(Bicycle) :: mine, yours

yours = mine
mine%front = yours%back

Assignment is the only intrinsic operation

You can redefine that or define other operations
But they are some of the topics I am omitting

Introduction to Modern Fortran – p. 10/??

Assignment (2)

Each derived type is a separate type
You cannot assign between different ones

TYPE :: Fred
REAL :: x

END TYPE Fred
TYPE :: Joe

REAL :: x
END TYPE Joe
TYPE(Fred) :: a
TYPE(Joe) :: b
a = b ! This is erroneous

Introduction to Modern Fortran – p. 11/??

Constructors

A constructor creates a derived type value

TYPE Circle
REAL :: X, Y, radius
LOGICAL :: filled

END TYPE Circle

TYPE(Circle) :: a
a = Circle(1.23, 4.56, 2.0, .False.)

Or use keywords for components (Fortran 2003)

a = Circle(X = 1.23, Y = 4.56, radius = 2.0, filled = .False.)

Introduction to Modern Fortran – p. 12/??

Default Initialisation

You can specify default initial values

TYPE :: Circle
REAL :: X = 0.0, Y = 0.0, radius = 1.0
LOGICAL :: filled = .False.

END TYPE Circle

TYPE(Circle) :: a, b, c
a = Circle(1.23, 4.56, 2.0, .True.)

This becomes much more useful with keywords

a = Circle(X = 1.23, Y = 4.56)

Introduction to Modern Fortran – p. 13/??

I/O on Derived Types

Can do normal I /O with the ultimate components
A derived type is flattened much like an array

[recursively, if it includes derived types]

TYPE(Circle) :: a, b, c
a = Circle(1.23, 4.56, 2.0, .True.)
PRINT *, a ; PRINT *, b ; PRINT *, c

1.2300000 4.5599999 2.0000000 T
0.0000000E+00 0.0000000E+00 1.0000000 F
0.0000000E+00 0.0000000E+00 1.0000000 F

Introduction to Modern Fortran – p. 14/??

Private Derived Types

When you define them in modules

A derived type can be wholly private
I.e. accessible only to module procedures

Or its components can be hidden
I.e. it’s visible as an opaque type

Both useful, even without semantic extension

Introduction to Modern Fortran – p. 15/??

Wholly Private Types

MODULE Marsupial
TYPE, PRIVATE :: Wombat

REAL :: weight, length
END TYPE Wombat
REAL, PRIVATE :: Koala

CONTAINS
. . .

END MODULE Marsupial

Wombat is not exported from Marsupial
No more than the variable Koala is

Introduction to Modern Fortran – p. 16/??

Hidden Components (1)

MODULE Marsupial
TYPE :: Wombat

PRIVATE
REAL :: weight, length

END TYPE Wombat
CONTAINS

. . .
END MODULE Marsupial

Wombat IS exported from Marsupial
But its components (weight, length) are not

Introduction to Modern Fortran – p. 17/??

Hidden Components (2)

Hidden components allow opaque types
The module procedures use them normally

• Users of the module can’t look inside them
They can assign them like variables
They can pass them as arguments
Or call the module procedures to work on them

An important software engineering technique
Usually called data encapsulation

Introduction to Modern Fortran – p. 18/??

Trees

E.g. type A contains an array of type B
Objects of type B contain arrays of type C

TYPE :: Leaf
CHARACTER(LEN=20) :: name
REAL(KIND=dp), DIMENSION(3) :: data

END TYPE Leaf
TYPE :: Branch

TYPE(Leaf), ALLOCATABLE :: leaves(:)
END TYPE Branch
TYPE :: Trunk

TYPE(Branch), ALLOCATABLE :: branches(:)
END TYPE Trunk

Introduction to Modern Fortran – p. 19/??

Recursive Types

Pointers allow that to be done a little more flexibly
You don’t need a separate type for each level

People often use more complicated structures
You build those using derived types
E.g. linked lists (also called chains)

Both very commonly used for sparse matrices
And algorithms like Dirichlet tesselation

We shall return to this when we cover pointers

Introduction to Modern Fortran – p. 20/??

Opaque Types etc.

This is another using aspect that has been omitted
It’s there in the notes, if you are interested

• Skip the practical that needs that facility

Introduction to Modern Fortran – p. 21/??

	Summary
	What Are Derived Types?
	Why Am I Wimping Out?
	Simple Derived Types
	More Complicated Ones
	Fortran 95 Restriction
	Component Selection
	Selecting from Arrays
	Assignment (1)
	Assignment (2)
	Constructors
	Default Initialisation
	I/O on Derived Types
	Private Derived Types
	Wholly Private Types
	Hidden Components (1)
	Hidden Components (2)
	Trees
	Recursive Types
	Opaque Types etc.

