
Introduction to Modern Fortran

Data Pointers

Nick Maclaren

nmm1@cam.ac.uk

March 2014

Introduction to Modern Fortran – p. 1/??



Data Pointers

• Fortran pointers are unlike C/C++ ones
Not like Lisp or Python ones, either

• Errors with using pointers are rarely obvious
This statement applies to almost all languages

• Fortran uses a semi--safe pointer model
Translation: your footgun has a trigger guard

Use pointers only when you need to

Introduction to Modern Fortran – p. 2/??



Pointer and Allocatable

Pointers are a sort of changeable allocation
In that use, they almost always point to arrays
For example, needed for non--rectangular arrays

Always try to use allocatable arrays first
Only if they really aren’t adequate, use pointers

ALLOCATABLE was restricted in Fortran 95
Fortran 2003 removed almost all restrictions
You may come across POINTER in old code
It can usually be replaced by ALLOCATABLE

Introduction to Modern Fortran – p. 3/??



Pointer-Based Algorithms

Some genuinely pointer--based algorithms
Fortran is not really ideal for such uses
• But don’t assume anything else is any better!

There are NO safe pointer--based languages
Theoretically, one could be designed, but ...

In Fortran, see if you can use integer indices
That has software engineering advantages, too
If you can’t, you may have to use pointers

Introduction to Modern Fortran – p. 4/??



Pointer Concepts

Pointer variables point to target variables
In almost all uses, pointers are transparent
• You access the target variables they point to

Dereferencing the pointer is automatic
• Special syntax for meaning the pointer value

The POINTER attribute indicates a pointer
The TARGET attribute indicates a target
No variable can have both attributes

Introduction to Modern Fortran – p. 5/??



Example

PROGRAM fred
REAL, TARGET :: popinjay = 0.0
REAL, POINTER :: arrow
arrow => popinjay
! arrow now points to popinjay
arrow = 1.23
PRINT *, popinjay

popinjay = 4.56
PRINT *, arrow

END PROGRAM fred

1.2300000
4.5599999

Introduction to Modern Fortran – p. 6/??



Pointers and Target Arrays

REAL, DIMENSION(20), TARGET :: array
REAL, DIMENSION(:), POINTER :: index

Pointer arrays must be declared without bounds
They will take their bounds from their targets

• Pointer arrays have just a rank
Which must match their targets, of course

Very like allocatable arrays

Introduction to Modern Fortran – p. 7/??



Use of Targets

Treat targets just like ordinary variables

The ONLY difference is an extra attribute
Allows them on the RHS of pointer assignment

Valid targets in a pointer assignment?
If OK for INTENT(INOUT) actual argument
Variables, array elements, array sections etc.

REAL, DIMENSION(20, 20), TARGET :: array
REAL, DIMENSION(:, :), POINTER :: index
index => array(3:7:2, 8:2:--1)

Introduction to Modern Fortran – p. 8/??



Initialising Pointers

Pointer variables are initially undefined
• Not initialising them is a Bad Idea

• You can use the special syntax => null()
To initialise them to disassociated (sic)

REAL, POINTER :: index => null()

• Or you can point them at a target, ASAP
Note that null() is a disassociated target

Introduction to Modern Fortran – p. 9/??



Pointer Assignment

You use the special assignment operator =>
Note that using = assigns to the target

PROGRAM fred
REAL, TARGET :: popinjay
REAL, POINTER :: arrow
arrow => popinjay ! POINTER assignment
! arrow now points to popinjay
arrow = 1.23 ! TARGET assignment
PRINT *, popinjay

popinjay = 4.56 ! TARGET assignment
PRINT *, arrow

arrow => null() ! POINTER assignment
END PROGRAM fred

Introduction to Modern Fortran – p. 10/??



Pointer Expressions

Also pointer expressions on the RHS of =>
Currently, only the results of function calls

FUNCTION select (switch, left, right)
REAL, POINTER :: select, left, right
LOGICAL switch
IF (switch) THEN

select => left
ELSE

select => right
END IF

END FUNCTION select

new---arrow => select(A > B, old---arrow, null())

Introduction to Modern Fortran – p. 11/??



ALLOCATE

You can use this just as for allocatable arrays
This creates some space and sets up array

REAL, DIMENSION(:, :), POINTER :: array
ALLOCATE(array(3:7:2, 8:2:--1), STAT=n)

If you can, stick to using ALLOCATABLE

Do you get the idea I don’t like pointers much?
At the end, I mention why you may need them

Introduction to Modern Fortran – p. 12/??



DEALLOCATE

• Only on pointers set up by ALLOCATE

DEALLOCATE(array, STAT=n)

array now becomes disassociated
Other pointers to its target become undefined

• Don’t DEALLOCATE undefined pointers
That is undefined behaviour

Introduction to Modern Fortran – p. 13/??



Previous Pointer Values

New pointer value overwrites the previous one
Applies to both assignment and ALLOCATE
Well, it is a sort of assignment ...

• Does not affect other pointers to the target

But DEALLOCATE makes other pointers undefined
Also happens if the target goes out of scope
• That causes the dangling pointer problem

And assignment can break the last link
• Memory leaks and (rarely) worse problems

Introduction to Modern Fortran – p. 14/??



ASSOCIATED

• Can test if pointers are associated

IF (ASSOCIATED(array)) . . .
IF (ASSOCIATED(array, target)) . . .

Works if array is associated or disassociated
Latter tests if array is associated with target

• Don’t use it on undefined pointers
That is undefined behaviour

Introduction to Modern Fortran – p. 15/??



A Nasty “Gotcha”

Fortran 95 forbids POINTER and INTENT
• Fortran 2003 applies INTENT to the link

subroutine joe (arg)
real, target :: junk
real, pointer, intent(in) :: arg
allocate(arg) ! this is ILLEGAL
arg => junk ! this is ILLEGAL
arg = 4.56 ! but this is LEGAL :--(

end subroutine joe

Introduction to Modern Fortran – p. 16/??



Irregular Arrays

• Fortran does not support them
This is how you do the task, if you need to

TYPE Cell
REAL, DIMENSION(:), ALLOCATABLE :: column

END TYPE Cell

TYPE(Cell), DIMENSION(:), ALLOCATABLE :: matrix

matrix can be a non--rectangular matrix
Note that pointers are not needed in this case

Introduction to Modern Fortran – p. 17/??



Example

TYPE Cell
REAL, DIMENSION(:), ALLOCATABLE :: column

END TYPE Cell

TYPE(Cell), DIMENSION(:), ALLOCATABLE :: matrix

INTEGER, DIMENSION(100) :: rows
READ *, N, (rows(K), K = 1,N)

ALLOCATE(matrix(1:N))
DO K = 1,N

ALLOCATE(matrix(K)%column(1:rows(K)))
END DO

Introduction to Modern Fortran – p. 18/??



Arrays of Pointers

• Fortran does not support them
This is how you do the task, if you need to

TYPE Cell
REAL, DIMENSION(:), POINTER :: column

END TYPE Cell

TYPE(Cell), DIMENSION(100) :: matrix

Introduction to Modern Fortran – p. 19/??



Remember Trees?

This was the example we used in derived types

TYPE :: Leaf
CHARACTER(LEN=20) :: name
REAL(KIND=dp), DIMENSION(3) :: data

END TYPE Leaf
TYPE :: Branch

TYPE(Leaf), ALLOCATABLE :: leaves(:)
END TYPE Branch
TYPE :: Trunk

TYPE(Branch), ALLOCATABLE :: branches(:)
END TYPE Trunk

Introduction to Modern Fortran – p. 20/??



Recursive Types

We can do this more easily using recursive types

TYPE :: Node
TYPE(Node), POINTER :: subnodes(:)
CHARACTER(LEN=20) :: name
REAL(KIND=dp), DIMENSION(3) :: data

END TYPE Node

Recursive components must be pointers
Fortran 2008 will allow allocatable
Obviously a type cannot include itself directly

Introduction to Modern Fortran – p. 21/??



More Complicated Structures

In mathematics, a graph is a set of linked nodes
Common forms include linked lists, trees etc.

A tree is just a hierarchy of objects
We have already covered these, in principle

Linked lists (also called chains) are common
And there are lots of more complicated structures

Those are very painful to handle in old Fortran
So most Fortran programmers tend to avoid them
But they aren’t difficult in modern Fortran

Introduction to Modern Fortran – p. 22/??



Singly Linked List
Head

Tail

Introduction to Modern Fortran – p. 23/??



Doubly Linked List
Head

Tail

Introduction to Modern Fortran – p. 24/??



Linked Lists

You can handle linked lists in a similar way
And any other graph--theoretic data structure, too

TYPE Cell
CHARACTER(LEN=20) :: node---name

REAL :: node---weight

TYPE(Cell), POINTER :: next, last, &
first---child, last---child

END TYPE Cell

Working with such data structures is non--trivial
Whether in Fortran or any other language

Introduction to Modern Fortran – p. 25/??



Graph Structures

Using pointers in Fortran is somewhat tedious
But it is as easy as in C++ and a little safer

Graph structures are in computer science
linked lists are probably the only easy case
Plenty of books on them, for example:

Cormen, T.H. et al. Introduction to Algorithms
Knuth,D.E. The Art Of Computer Programming
Also Sedgewick, Ralston, Aho et al. etc.

Introduction to Modern Fortran – p. 26/??



Procedure Pointers

Fortran 2003 allows them, as well as data pointers

Don’t go there

This has absolutely nothing to do with Fortran
They are a nightmare in all languages, including C++
They are almost impossible to use safely
A fundamental problem in any scoped language

• Very rarely need them in clean code, anyway
Passing procedures as arguments is usually enough
Or one procedure calling a fixed set of others

Introduction to Modern Fortran – p. 27/??


	Data Pointers
	Pointer and Allocatable
	Pointer-Based Algorithms
	Pointer Concepts
	Example
	Pointers and Target Arrays
	Use of Targets
	Initialising Pointers
	Pointer Assignment
	Pointer Expressions
	ALLOCATE
	DEALLOCATE
	Previous Pointer Values
	ASSOCIATED
	A Nasty ``Gotcha''
	Irregular Arrays
	Example
	Arrays of Pointers
	Remember Trees?
	Recursive Types
	More Complicated Structures
	Linked Lists
	Graph Structures
	Procedure Pointers

