
Introduction to Modern Fortran

External Names, Make and Linking

Nick Maclaren

nmm1@cam.ac.uk

March 2014

Introduction to Modern Fortran – p. 1/??

Introduction

Some of this copies parts of the modules lecture
It would be too confusing otherwise

Introduction to Modern Fortran – p. 2/??

External Procedures (1)

A file can contain more than one module
Also procedures, not included in modules
These are called external procedures

SUBROUTINE dongle
. . .

END SUBROUTINE dongle
SUBROUTINE mangle

. . .
END SUBROUTINE mangle

PROGRAM is always an external procedure

Introduction to Modern Fortran – p. 3/??

External Procedures (2)

• They are not recommended in most cases
It’s much harder to get right, and link correctly

• But a lot of older programs do it

Same mechanism as used to call external libraries
And code written in C or using a C interface
LAPACK, MPI, . . .

Introduction to Modern Fortran – p. 4/??

External Procedures (3)

This is a little better, and useful for testing
• But note that the order is critical

MODULE whatever
. . .

END MODULE whatever

MODULE whatsit
USE whatever
. . .

END MODULE whatsit

PROGRAM mangle
USE whatsit
. . .

END PROGRAM mangle

Introduction to Modern Fortran – p. 5/??

Compiling Modules (1)

This is a FAQ – Frequently Asked Question
The problem is the answer isn’t simple

• That is why I give some of the advice that I do

The following advice will not always work
OK for most compilers, but not necessarily all

• This is only the Fortran module information

And it doesn’t apply to IBM AIX . . .

Introduction to Modern Fortran – p. 6/??

Compiling Modules (2)

The module name need not be the file name
Doing that is strongly recommended, though
• The same applies to external procedures

You now compile the file, but don’t link it
nagfor –C=all –c mymod.f90

It will create files like mymod.mod and mymod.o
They contain the interface and the code
Procedures create only code files (mymod.o)

Will describe the process in more detail later

Introduction to Modern Fortran – p. 7/??

Using Compiled Modules

All the program needs is the USE statements

• Compile all of the modules in a dependency order
If A contains USE B, compile B first

• Then add a *.o for every file when linking

nagfor --C=all --o main main.f90 mymod.o

nagfor --C=all --o main main.f90 \
mod---a.o mod---b.o mod---c.o

Introduction to Modern Fortran – p. 8/??

Makefile Warnings

This does NOT teach how to use make
It teaches just the Fortran--specific aspects

See Building, installing and running software
If you haven’t been to it, DO SO before starting!

The defaults for $(FC) and $(FFLAGS) are broken
Hopelessly outdated, and no longer work

That applies to both POSIX and GNU make!
⇒ You must set them yourself

Or you can use other names, if you prefer

Introduction to Modern Fortran – p. 9/??

Makefile Basics (1)

Use make in exactly the same way as for C
• Must set $(FC) and $(FFLAGS) or whatever
• Modules create both *.mod and *.o files

• Do not need to set LDFLAGS = –lm

Will give a very simple example:

The module file utils.f90 creates a module UTILS
And that is used by a program file trivial.f90

• Dependencies include both *.mod and *.o files

Introduction to Modern Fortran – p. 10/??

Makefile Basics (2)

FC = nagfor
FFLAGS = --C=all

LDFLAGS =

all: trivial

utils.mod utils.o: utils.f90
<tab> $(FC) $(FFLAGS) --c utils.f90

trivial: utils.mod utils.o trivial.f90
<tab> $(FC) $(FFLAGS) $(LDFLAGS) --o trivial trivial.f90 utils.o

Introduction to Modern Fortran – p. 11/??

Interfaces in Modules

The module can define just the interface
The procedure code is supplied elsewhere
The interface block comes before CONTAINS

• The best way of calling external procedures
Including external libraries, C code etc.

• You had better get them consistent!
The interface and code are not checked

• Extract interfaces from procedure code
f2f90 can do it automatically

Introduction to Modern Fortran – p. 12/??

Cholesky Decomposition

SUBROUTINE CHOLESKY(A)
USE double ! note that this has been added
INTEGER :: J, N
REAL(KIND=dp) :: A(:, :), X
N = UBOUND(A, 1)
DO J = 1, N

X = SQRT(A(J, J) -- &
DOT---PRODUCT(A(J, :J--1), A(J, :J--1)))

A(J,J) = X
IF (J < N) &

A(J+1:, J) = (A(J+1:, J) -- &
MATMUL(A(J+1:, :J--1), A(J, :J--1))) / X

END DO
END SUBROUTINE CHOLESKY

Introduction to Modern Fortran – p. 13/??

The Interface Module

MODULE MYLAPACK
INTERFACE

SUBROUTINE CHOLESKY (A)
USE double ! part of the interface
IMPLICIT NONE
REAL(KIND=dp) :: A(:, :)

END SUBROUTINE CHOLESKY
END INTERFACE

! This is where CONTAINS would go if needed
END MODULE MYLAPACK

Introduction to Modern Fortran – p. 14/??

The Main Program
PROGRAM MAIN

USE double
USE MYLAPACK
REAL(KIND=dp) :: A(5,5) = 0.0---dp, Z(5)

DO N = 1,10
CALL RANDOM---NUMBER(Z)

DO I = 1,5 ; A(:,I) = A(:,I)+Z*Z(I) ; END DO

END DO
CALL CHOLESKY(A)
DO I = 1,5 ; A(:I--1,I) = 0.0 ; END DO
WRITE (*, ’(5(1X,5F10.6/))’) A

END PROGRAM MAIN

Introduction to Modern Fortran – p. 15/??

The Makefile

FC = nagfor
FFLAGS = --C=all
LDFLAGS =

all: program

cholesky.o: cholesky.f90
<tab> $(FC) $(FFLAGS) --c cholesky.f90

mylapack.mod mylapack.o: mylapack.f90
<tab> $(FC) $(FFLAGS) --c mylapack.f90

program: cholesky.o mylapack.mod mylapack.o program.f90

<tab> $(FC) $(FFLAGS) $(LDFLAGS) --o program.f90 \
<tab> cholesky.o mylapack.o

Introduction to Modern Fortran – p. 16/??

External Names (1)

The following names are global identifiers
All module names
All external procedure names
Old Fortran COMMON blocks

• They must all be distinct
And remember their case is not significant

• Avoid using any built--in procedure names
That works, but it is too easy to make errors

Introduction to Modern Fortran – p. 17/??

External Names (2)

C and C interfaces add more:

Some BIND(C) names (see later)
C file scope extern declarations
Almost all C library functions

• Also many C programmers are sloppy
Undocumented external names are common mistakes

Few people have trouble with pure Fortran code

Introduction to Modern Fortran – p. 18/??

Build Warnings

Avoid file names like fred.f90 AND
external names like FRED

Unless FRED is inside fred.f90

• It also helps a lot when hunting for FRED

This has nothing at all to do with Fortran
It is something that implementations get wrong
Especially the fancier sort of debuggers
It applies just as much to C code

Introduction to Modern Fortran – p. 19/??

More on Makefiles

It’s useful to know a bit more about makefiles
The remainder is some of the how they work

Introduction to Modern Fortran – p. 20/??

What Compilers Do (1)

A file frederick.f90 contains modules fred and alf
You compile this with:

nagfor –C=all –c frederick.f90

It will create files frederick.o, fred.mod and alf.mod

• frederick.o contains the compiled code
Link this into into the executable, in the usual way:

nagfor –C=all program program.f90 frederick.o

Introduction to Modern Fortran – p. 21/??

What Compilers Do (2)

• fred.mod and alf.mod contain the interfaces
Think of them as being a sort of compiled header

• You don’t do anything with these, explicitly
The compiler will do find them and use them

A file program.f90 contains USE fred and USE alf
• The compiler will search for fred.mod and alf.mod

Searched for using the same paths as headers
To add another search path, use –I<directory>
• Be warned – compilers vary – see their docs

Introduction to Modern Fortran – p. 22/??

Makefile Rules (1)

You need to set up rules to compile the modules
And to add dependencies to ensure they are rebuilt

• Dependencies are exactly like headers
The object file has a dependency on the module

A lot of people forget about headers in makefiles
• Doing that with modules is disastrous

Gets the compiled code out of step with the interface
E.g. gets the new fred.o and the old fred.mod

Introduction to Modern Fortran – p. 23/??

Makefile Rules (2)

A file program.f90 contains USE fred and USE alf
Modules fred and alf are in files fred.f90 and alf.f90
This is how you set up the dependency and rules:

program: program.o fred.o alf.o
<tab> $(FC) $(FFLAGS) $(LDFLAGS) --o program

program.o: program.f90 fred.mod alf.mod

<tab> $(FC) $(FFLAGS) --c program.f90

fred.mod fred.o: fred.f90
<tab> $(FC) $(FFLAGS) --c fred.f90

alf.mod alf.o: alf.f90
<tab> $(FC) $(FFLAGS) --c fred.f90

Introduction to Modern Fortran – p. 24/??

Makefile Rules (3)

Say frederick.f90 contains modules fred and alf
and includes the statement USE double

program: program.o frederick.o double.o
<tab> $(FC) $(FFLAGS) $(LDFLAGS) --o program

program.o: program.f90 fred.mod alf.mod

<tab> $(FC) $(FFLAGS) --c program.f90

double.mod double.o: double.f90
<tab> $(FC) $(FFLAGS) --c double.f90

fred.mod alf.mod frederick.o: frederick.f90 double.mod
<tab> $(FC) $(FFLAGS) --c double.f90

Introduction to Modern Fortran – p. 25/??

Doing Better (1)

Can clean up the Makefile somewhat, fairly easily

E.g. use the $@, $< and $* macros

But take care, as things are a little tricky

• Problem is one module file produces two results
And headers are not compiled, but modules are

It’s still a bit tedious with a lot of modules

Introduction to Modern Fortran – p. 26/??

Doing Better (2)

You can do a good deal better, but it’s advanced use
Beyond Building, installing and running software

Need either inference rules or pattern rules
Worse, POSIX and GNU are wildly different

It can be done, and it’s not even very difficult
• But it is very system--dependent!

Introduction to Modern Fortran – p. 27/??

	Introduction
	External Procedures (1)
	External Procedures (2)
	External Procedures (3)
	Compiling Modules (1)
	Compiling Modules (2)
	Using Compiled Modules
	Makefile Warnings
	Makefile Basics (1)
	Makefile Basics (2)
	Interfaces in Modules
	Cholesky Decomposition
	The Interface Module
	The Main Program
	The Makefile
	External Names (1)
	External Names (2)
	Build Warnings
	More on Makefiles
	What Compilers Do (1)
	What Compilers Do (2)
	Makefile Rules (1)
	Makefile Rules (2)
	Makefile Rules (3)
	Doing Better (1)
	Doing Better (2)

