
Introduction to Modern Fortran

Interoperability with C

Nick Maclaren

nmm1@cam.ac.uk

March 2014

Introduction to Modern Fortran – p. 1/??

Background

Mixed--language programming is ancient technology
Traditionally done by non--portable hacking and worse

Fortran 2003 has defined a proper interface to C
Extended in TS 29113 – mentioned later
But the old rule number one still holds:

• KISS – Keep It Simple and Stupid

Be ‘clever’ and your program will go wrong
Probably not while debugging, but in actual use

Introduction to Modern Fortran – p. 2/??

Why Interoperate with C? (1)

Often to get access to system interfaces
Or to extend the intrinsic functions
• Functions are typically very simple in both cases

E.g. get high--precision (microsecond) timestamp
Get environment variable, or invoke command
Fortran 2003 provides intrinsics to do the latter

Also, in order to use C for specialised I /O
This is how MPI etc. are implemented
• I do NOT advise calling GUI libraries this way

Introduction to Modern Fortran – p. 3/??

Why Interoperate with C? (2)

C and C++ often need to call Fortran

Fortran has a wider range of faster numeric libraries
This is not just for historical reasons

Array handling in C and C++ is painful
It is often easier and runs faster using Fortran
• Especially true if you need to use OpenMP

That is why LAPACK etc. are often in Fortran

Introduction to Modern Fortran – p. 4/??

Merging Applications

Building a single program out of two or more
Where they are in a mixture of languages
Also calling a major library from another language

E.g. HPC code calling GUI libraries
In general, using modern Fortran and C++

• Strongly advise you to avoid doing this
Always tricky – and can be fiendish

I am not going to describe the problems that arise

Introduction to Modern Fortran – p. 5/??

Multi-Program Applications

Better to build a multi--process application

MultiApplics/

• May need to write special I /O functions
But that is generally easier (see above)!

Recommended for using GUI interfaces in HPC

Introduction to Modern Fortran – p. 6/??

Apologia

This lecture is a gross over--simplification
The area has always been diabolically complicated

• This maps a safe path through the minefield
There is a huge amount more that it doesn’t mention

• The languages have incompatible concepts
And implementations have a zillion variants
Also operating system variants, especially linker

And it doesn’t even mention more than the basics

Introduction to Modern Fortran – p. 7/??

A Quiz

How are these implemented? Are you sure?

float fred (char c , float f , int i [5]) ;

char joe () ;

FUNCTION Alf (a , b , c , d)
COMPLEX :: Alf , a
INTEGER (INTENT = IN) :: b (3) , c
CHARACTER (LEN = 52) :: d

END FUNCTION Alf

Don’t stop after the first 2–3 answers :--)
No, I am NOT joking – so program defensively

Introduction to Modern Fortran – p. 8/??

Fortran to C Interoperability

Fortran standard is unexpectedly restrictive
Most of its restrictions are to enable portable coding

It is easily misinterpretable by C programmers
Regrettably, that means by most compiler developers

Important Note:

These are not mainly due to the design of Fortran
More the C standard and operating systems

• The main reason this lecture says what it does
Write defensive code and you will rarely have trouble

Introduction to Modern Fortran – p. 9/??

The C Standard

• Using two C compilers has similar problems
Implementation variations in C alone are incredible
Can hit them using libraries, even the system’s ones

• You will rarely do so under Linux on x86 etc.
Every C vendor aims for gcc compatibility

C is often said to be a simple language
• That is not true, and has not been for 20+ years
The reasons and problems are subtle and arcane

And C++ is is 3–5 times as complicated as Fortran

Introduction to Modern Fortran – p. 10/??

Basic Model

It defines Fortran kinds that map to C types

There is an intrinsic module to define the names

USE , INTRINSIC :: ISO---C---BINDING

And a BIND(C) attribute to specify C linkage

• Without it, Fortran does NOT define linkage
Arguments are not always passed as addresses
Derived types are not always laid out as written

Fortran allows much more optimisation than C/C++

Introduction to Modern Fortran – p. 11/??

Use of the Module

Compilers are allowed to define extra names
Also, future versions of the standards will do so
So it is strongly advised to use ONLY after USE

USE , INTRINSIC :: ISO---C---BINDING , &

ONLY C---PTR

Remember IMPORT for use in interface bodies

• As usual, I won’t do that in these slides
Any omission in specimen answers is a bug

Introduction to Modern Fortran – p. 12/??

Recommended Data Types

Fortran C

CHARACTER(KIND=C---CHAR) char

⇒ Note that char implies LEN=1

INTEGER(KIND=C---INT) int

INTEGER(KIND=C---LONG) long

REAL(KIND=C---DOUBLE) double

TYPE(C---PTR) void *

The most useful, and the safest
Compilation error if no match (KIND is --1)
Many others, but all have subtle gotchas

Introduction to Modern Fortran – p. 13/??

Fortran Default Types

• Currently, these are NOT interoperable
In practice, the following equivalences hold:

Fortran Default Type Interop. KIND C type

CHARACTER C---CHAR char

INTEGER C---INT int

REAL C---FLOAT float

REAL(KIND(0.0D0)) C---DOUBLE double

Can pass them to C using C---LOC and C---PTR

COMPLEX also carries across, where relevant

Introduction to Modern Fortran – p. 14/??

Function Result Types

Can be only scalars, because of C constraints
Only four types are really safe, unfortunately
• In C terms, int, long, double and void *
I.e. C---INT, C---LONG, C---DOUBLE and C---PTR

Can return char, ---Complex and derived types

⇒ But don’t bet on them actually working :--(
Same applies to float and C’s zoo of integer types

• Due to compiler bugs, and may be temporary
The reasons have nothing to do with Fortran

Introduction to Modern Fortran – p. 15/??

Simple C Functions

Must use an explicit interface with BIND(C)

FUNCTION Joe () BIND (C)
REAL (KIND = C---INT) :: Joe

END SUBROUTINE Joe

PRINT * , Joe ()

Can be used to call a C external function
Note the name is converted to lower--case for C

int joe (void) { . . . }

Introduction to Modern Fortran – p. 16/??

High-Precision Timestamp

Returns the current time to microsecond precision
Just like MPI---Wtimer, but more general

/* Return high--precision timestamp. */

#include <stddef.h>
#include <sys/time.h>
double gettime (void) {

struct timeval timer ;

if (gettimeofday(& timer , NULL))
return -- 1.0 ;

return timer . tv---sec +

1.0e--6 * timer . tv---usec ;

}

Introduction to Modern Fortran – p. 17/??

Using the Timestamp
PROGRAM Timer

USE , INTRINSIC :: ISO---C---BINDING , &

ONLY : C---DOUBLE

INTERFACE
FUNCTION Gettime () BIND (C)

IMPORT :: C---DOUBLE

REAL (KIND = C---DOUBLE) Gettime

END FUNCTION Gettime
END INTERFACE
REAL (KIND = KIND(0.0D0)) :: stamp
stamp = Gettime () ! This converts the KIND
CALL Calculation
PRINT * , "Time taken: " , Gettime () -- stamp

END PROGRAM Timer

Introduction to Modern Fortran – p. 18/??

Arguments

Normally passed as pointers to the first element
Applies to both scalars and arrays

Only explicit size and assumed size arrays
No assumed shape, ALLOCATABLE or POINTER
And CHARACTER must have LEN=1 (or default)

• But association lets you pass those types
What you can’t do is to use them in the interface

Procedure arguments are not allowed (but see later)

Introduction to Modern Fortran – p. 19/??

Interoperable Procedures (1)

Subroutines correspond to void functions

INTERFACE
SUBROUTINE Fred (A , B) BIND (C)

IMPORT :: C---INT

INTEGER (KIND = C---INT) :: A , B

END SUBROUTINE Fred
END INTERFACE

void fred (int * p , int * q) {
. . .

}

Introduction to Modern Fortran – p. 20/??

Interoperable Procedures (2)

In exactly the same way, the C prototype:

void fred (int * , int *) ;

Can call the Fortran external procedure:

SUBROUTINE Fred (A , B) BIND (C)
INTEGER (KIND = C---INT) :: A , B

END SUBROUTINE Fred

Introduction to Modern Fortran – p. 21/??

Interoperable Procedures (3)

You can name the C function you call:

SUBROUTINE John () BIND (C , NAME = ’Doe’)

END SUBROUTINE John

Interoperates with:

void Doe () ;

Note that this form does not lower case the string
Can also use when the C name is invalid in Fortran

Introduction to Modern Fortran – p. 22/??

INTENT(IN) and const

C const is not the same as INTENT(IN)
But, for pointer arguments, it is similar in purpose
You are recommended to match interfaces like this

SUBROUTINE Pete (A , B , C) BIND (C)
REAL (KIND = C---DOUBLE) , INTENT (IN) :: A

INTEGER (KIND = C---INT) , INTENT (IN) :: B

REAL (KIND = C---DOUBLE) :: C

END SUBROUTINE Pete

void pete (const double * a , const int * b ,
double * c) ;

Introduction to Modern Fortran – p. 23/??

Coming Fairly Shortly

The above has used only facilities in Fortran 2003
TS 29113 extends it for arguments of procedures

Arguments can be assumed shape, assumed rank,
ALLOCATABLE, POINTER,
and assumed length CHARACTER

C interfaces provided to access such types

No change to return types or external data
nor procedure pointer arguments and variables

I hope to improve this area in the next standard

Introduction to Modern Fortran – p. 24/??

Other Procedures

In some cases, omitting the BIND(C) will work
But only in some cases, and only with some compilers

It is not recommended and not portable
But here is an old course that describes it

MixedLang/

• If possible, convert to the standard mechanism

Introduction to Modern Fortran – p. 25/??

Arrays (1)

In general, arrays must be explicit shape
And their shapes must match in Fortran and C
Remember that array order is the other way round

INTEGER (KIND = C---INT) :: A (42 , 221 , 13)

Corresponds to:

int a [13] [221] [42] ;

Sequence association relaxes this in some contexts
Treats that as a vector of length 42*221*13

Introduction to Modern Fortran – p. 26/??

Arrays (2)

In arguments, they may also be assumed size

INTEGER (KIND = C---INT) :: A (31 , 100 , *)

Corresponds to:

int a [] [100] [31] ;

int (* a) [100] [31] ;

And, when used in appropriate ways only:
int a [] ;

int * a ;

int a [] [155] ;

int a [] [5] [2] [31] [2] ;

Introduction to Modern Fortran – p. 27/??

CHARACTER (1)

Unfortunately, only LEN=1 is fully interoperable

The length is very like a first dimension
And remember the rules of sequence association

SUBROUTINE Fred (N , A) BIND (C)

INTEGER (KIND = C---INT) :: N

CHARACTER (KIND = C---CHAR) :: A (N)

END SUBROUTINE Fred

CHARACTER (KIND = C---CHAR , LEN = 72) :: A (100)

CALL Fred (72 , A) ! This will work

Introduction to Modern Fortran – p. 28/??

CHARACTER (2)

C strings are null--terminated – Fortran’s are not

Remember char[4] is needed to store "123"
When moving to Fortran allow strlen()+1 bytes

You may need to add a null character when calling C
There is a C---CHAR constant C---NULL---CHAR for this

Also C---NEW---LINE and the other C escapes

All defined in the module ISO---C---BINDING

Alternatively, pass the length explicitly, as MPI does

Introduction to Modern Fortran – p. 29/??

VALUE Arguments

Puts value directly into the C argument list

• Other than one use, I advise avoiding VALUE
Generally best to write C interface functions yourself
Pass all arguments as pointers and convert if needed

C argument passing is far trickier than it seems
High chance of a Fortran compiler getting it wrong
Problems of both function results and derived types

• It can be done, but tricky to get reliably portable
Again, this has nothing to do with Fortran

Introduction to Modern Fortran – p. 30/??

Anonymous Pointers (1)

TYPE(C---PTR) is equivalent of C void *
C---PTR can be assigned, used as arguments

Can even be used as the result type of functions

C---LOC intrinsic gets an address as a C---PTR

Needs either TARGET or POINTER attribute
Strictly, this example needs TS 29113, but works now

TYPE(C---PTR) :: ptr

INTEGER , TARGET :: array (1000)
ptr = C---LOC (array)

Introduction to Modern Fortran – p. 31/??

Anonymous Pointers (2)

With VALUE, can pass address of most variables

USE , INTRINSIC :: ISO---C---BINDING , &

ONLY : C---INT , C---PTR , C---LOC

INTERFACE
SUBROUTINE Weeble (n , a) BIND (C)

IMPORT :: C---INT , C---PTR

INTEGER (KIND = C---INT) , INTENT (IN) :: n

TYPE (C---PTR) , VALUE :: a

END SUBROUTINE Weeble
END INTERFACE
REAL , TARGET :: array (1000) ! No BIND(C)

CALL Weeble (1000 , C---LOC (array))

void weeble (int * n , void * b) ;

Introduction to Modern Fortran – p. 32/??

Anonymous Pointers (3)

A null pointer constant called C---NULL---PTR
• Recommended for initialising C---PTR

C---PTR does not initialise automatically

Test for null or identical using C---ASSOCIATED

TYPE(C---PTR) :: ptr1 , ptr2, ptr3

ptr1 = function (1)
ptr2 = function (2)
IF (C---ASSOCIATED (ptr1)) . . . ! Non--null

IF (C---ASSOCIATED (ptr1 , ptr2)) . . . ! Identical

IF (C---ASSOCIATED (ptr3)) . . . ! Undefined (error)

Introduction to Modern Fortran – p. 33/??

Horrible Warning

• It is an error if the objects merely overlap
Or if either argument doesn’t have a valid value
Including when it has been deallocated
⇒ This applies in C, too – did you know?

INTEGER (KIND = C---INT) , POINTER :: array (:)

TYPE(C---PTR) :: ptr1 , ptr2

IF (C---ASSOCIATED (ptr1)) . . . ! Undefined (error)

ALLOCATE (array (1000))
ptr1 = C---LOC (array)

ptr2 = C---LOC (array (: 500))

IF (C---ASSOCIATED (ptr1 , ptr2)) . . . ! Undefined (error)

DEALLOCATE (array)
IF (C---ASSOCIATED (ptr2)) . . . ! Undefined (error)

Introduction to Modern Fortran – p. 34/??

Anonymous Pointers (4)

Can associate a Fortran pointer with a C---PTR value

If it is an array, you must also specify its shape

• Be warned – you get no type checking
The equivalent of casting void * to a typed pointer

TYPE(C---PTR) :: ptr1 , ptr2

REAL (KIND = KIND (0.0D0)) , POINTER :: &
scalar , array (: , : , :)

CALL C---F---POINTER (ptr1 , scalar)

CALL C---F---POINTER (ptr1 , array , &

(/ 42 , 13 , 131 /))

Introduction to Modern Fortran – p. 35/??

Derived Types (1)

Simple cases map onto C structures
C++ PODs are the idea – Plain Old Data

Only interoperable component types
No ALLOCATABLE or POINTER components

Derived types allowed as components, as in C
None of the more advanced properties

None have been covered in this course

Explicit shape arrays are allowed, just as in C
Remember that array order is the other way round

Introduction to Modern Fortran – p. 36/??

Derived Types (2)

Unfortunately, C struct layout is a can of worms
Theoretically, the Fortran and C compilers match
In practice, that’s far too optimistic
The problems are far too complicated to describe

• KISS – i.e. make it easy for the compiler

Put larger base types before smaller ones
E.g. double before int before char

Will maximise the chance of reliable portability
Will usually maximise the code’s efficiency, too

Introduction to Modern Fortran – p. 37/??

Example

TYPE , BIND (C) :: Packrat

REAL (KIND = C---DOUBLE) :: array (40 , 15)

INTEGER (KIND = C---INT) :: code

CHARACTER (KIND = C---CHAR) :: message (72 + 1)

END TYPE Packrat

typedef struct {
double array [15] [40] ;

int code ;

char message [72 + 1] ;

}

Introduction to Modern Fortran – p. 38/??

External Data (1)

Variables in modules can be accessed from C
Any with BIND(C) map to an external variable
Ones without it do not create an external name

MODULE Conglomerate

USE , INTRINSIC :: ISO---C---BINDING

INTEGER , ALLOCATABLE :: array (: , :)

REAL (KIND = C---DOUBLE) , BIND (C) :: visible

END MODULE Conglomerate

visible can be accessed from C by:

extern double visible ;

Introduction to Modern Fortran – p. 39/??

External Data (2)

You can name the external variable, as before
You can initialise it in either Fortran or C
But you mustn’t do that in both, of course

MODULE Whatever
INTEGER (KIND = C---INT) , &

BIND (C , NAME = ’Fred---3’) :: x

INTEGER (KIND = C---INT) , BIND (C) :: PDQ = 456

END MODULE Whatever

extern int Fred---3 = 987 ;

extern int pdq ;

Introduction to Modern Fortran – p. 40/??

Complex Numbers

Fortran interoperates with C99 ---Complex

Sadly, C99 ---Complex is horribly misdesigned

Few people use it – so WG14 has made it optional

• I don’t advise using it for function results
Nor for arguments that use the VALUE attribute
It will work with some compilers and not others
You don’t want to know why, I can assure you

In practice, C++ complex has the same layout
But it is NOT fully compatible with C99 ---Complex

Introduction to Modern Fortran – p. 41/??

Other Data Types

I don’t advise these as result types or with VALUE
Fine as pointer arguments or in external data

Fortran C

INTEGER(KIND=C---SIGNED---CHAR) signed char

INTEGER(KIND=C---SHORT) short

INTEGER(KIND=C---LONG---LONG) long long

REAL(KIND=C---FLOAT) float

COMPLEX(KIND=C---FLOAT) complex float

COMPLEX(KIND=C---DOUBLE) complex double

Introduction to Modern Fortran – p. 42/??

Other C Integer Types

You can pass unsigned integers as signed ones
• But stick to the values that are valid in both
Fortran will always treat the values as signed

• Fortran has size---t but not ptrdiff---t

But size---t is an unsigned integer type!
• ptrdiff---t /size---t aren’t a signed/unsigned pair

But they will be in most implementations

C99 has a zoo of extended integer types
• Avoid them in interfaces – even in pure C
C specification is poor, and implementations differ

Introduction to Modern Fortran – p. 43/??

Procedure Pointers (1)

TYPE(C---FUNPTR) is an untyped procedure pointer

In C, all function pointers are compatible
I.e. they are different types, but with typeless values

• The procedure must be fully interoperable
Not just BIND(C), but in C and C++, too
⇒ No inline, <stdarg.h> or C++ member functions

Use TYPE(C---FUNPTR), VALUE for arguments

You use C---FUNLOC just like C---LOC

Remember that C function type syntax is weird

Introduction to Modern Fortran – p. 44/??

Procedure Pointers (2)

There is a constant C---NULL---FUNPTR

C---ASSOCIATED also works on TYPE(C---FUNPTR)

C---F---PROCPOINTER converse of C---FUNLOC

Procedure pointers and untyped values are both tricky
⇒ Both together is doubleplus ungood (as in 1984)
This will show the most trivial and safest uses

BIND(C) internal procedures needs Fortran 2008
Few compilers allow them yet, though gfortran does

Introduction to Modern Fortran – p. 45/??

Fortran to C (1)

This subroutine just calls its argument

SUBROUTINE Marshall (arg) BIND (C)
INTERFACE

SUBROUTINE arg () BIND (C)
END SUBROUTINE arg

END INTERFACE
CALL arg

END SUBROUTINE Marshall

Introduction to Modern Fortran – p. 46/??

Fortran to C (2)

The C equivalent of that subroutine is

void marshall (void (* arg) (void)) {

arg () ;

}

Examples using internal and external procedures
Try them with both the Fortran and C marshall

Introduction to Modern Fortran – p. 47/??

Fortran to C (3)
PROGRAM McLuhan

USE , INTRINSIC :: ISO---C---BINDING , &

ONLY : C---FUNPTR , C---FUNLOC

INTERFACE
SUBROUTINE Marshall (arg) BIND (C)

IMPORT :: C---FUNPTR

TYPE (C---FUNPTR) , VALUE :: arg

END SUBROUTINE Marshall
END INTERFACE
CALL Marshall (C---FUNLOC (Medium))

CONTAINS
SUBROUTINE Medium () BIND (C)

PRINT * , "The medium is the message"
END SUBROUTINE Medium

END PROGRAM McLuhan

Introduction to Modern Fortran – p. 48/??

Fortran to C (4)
PROGRAM McLuhan

USE , INTRINSIC :: ISO---C---BINDING , &

ONLY : C---FUNPTR , C---FUNLOC

INTERFACE
SUBROUTINE Medium () BIND (C)
END SUBROUTINE Medium
SUBROUTINE Marshall (arg) BIND (C)

IMPORT :: C---FUNPTR

TYPE (C---FUNPTR) , VALUE :: arg

END SUBROUTINE Marshall
END INTERFACE
CALL Marshall (C---FUNLOC (Medium))

END PROGRAM McLuhan
SUBROUTINE Medium () BIND (C)

PRINT * , "The medium is the message"
END SUBROUTINE Medium

Introduction to Modern Fortran – p. 49/??

C to Fortran

Try this with both the Fortran and C marshall

#include <stdio.h>

extern void marshall (void (*) ()) ;

void Medium (void) {
printf ("The medium is the message\n") ;

}

int main (void) {
marshall (Medium) ;

return 0 ;

}

Introduction to Modern Fortran – p. 50/??

Practicalities

In theory, that’s all – but not in practice
The following has little to do with the standards

The most common areas I have seen cause trouble
• They are not a complete list of problem areas
Feedback on these guidelines would be appreciated

And remember rule number one:

• KISS – Keep It Simple and Stupid

Introduction to Modern Fortran – p. 51/??

Compatible Compilers

You need compatible Fortran and C compilers
Those from the same vendor usually are
E.g. gfortran and gcc or Intel ifort and icc
You can sometimes mix vendors, but not always

• Use both in either 32-- or 64--bit mode!
Make sure the IEEE 754 modes are compatible
The same applies to some other compiler options

• All this applies to C++ and C, incidentally

Introduction to Modern Fortran – p. 52/??

Compilation and Linking

Compile all worker code without linking
• Link using compiler for master language

May need extra libraries, especially if C is master
Here is a way of find out which ones:

Usually option to display command expansion
–v, –V, –#, –dryrun etc.

Link a dummy program using both compilers
Add any missing ones to (master) link command

Introduction to Modern Fortran – p. 53/??

GNU and Linux on Intel/AMD

Generally, the following will work:

gcc --c <other options> fred.c joe.c
gfortran <other options> alf.f90 bert.f90 \

fred.o joe.o
and:

gfortran --c <other options> alf.f90 bert.f90
gcc <other options> fred.c joe.c \

alf.o bert.o –lgfortran –lm

You should put this in a Makefile, of course

Introduction to Modern Fortran – p. 54/??

Name Clashes (1)

Any external names in Fortran and C can clash
Fortran external procedures, COMMON and modules

whether or not they have the BIND(C) attribute

Together with any C extern functions and variables
Remember extern is the default in file scope

• Avoid same name even when ignoring case
Don’t use underscores at the beginning or end

Compilers vary a lot on name munging rules
It’s a bad idea to rely on that to protect your code

Introduction to Modern Fortran – p. 55/??

Name Clashes (2)

The really nasty problems occur with the libraries
All C library functions are all external names

And remember that C++ includes the C library

Some variables, like errno and math---errhandling

Occasionally even POSIX ones, like environ

• Try to avoid all plausible external names
The Fortran language no longer has any
But C and POSIX do, and Microsoft may

Introduction to Modern Fortran – p. 56/??

Fortran and C++

Both of these can interoperate via C, in theory

• Unfortunately, C++ insists on being master
Roughly corresponds to owning the main program
May also involve owning the memory management

• Mixing them is very compiler--dependent
Both need to be initialised and terminated properly
Defined interfaces for this are now very rare

Many other issues, but most are mentioned later

Introduction to Modern Fortran – p. 57/??

Fortran is the Master (1)

• Generally, I recommend using this approach
The main exception is if you need to use C++

• Let’s start by assuming a Unix--like system
In this context, Microsoft and Macintosh are Unix--like

Avoid using stdin, stdout and even stderr
stderr is the safest if you don’t use ERROR---UNIT
• But it’s very compiler--dependent what works

Opening other files using C or POSIX is OK

Introduction to Modern Fortran – p. 58/??

Fortran is the Master (2)

Most of the C library works, including <time.h>

• <stdlib.h> is the main problem (but see later)
Don’t expect atexit() etc. to work, though it may
Occasionally used by a few libraries written in C
Anything may happen if you call exit() etc.

malloc() will work, if you don’t push it too hard
getenv() and system() almost always work

• But what if the system isn’t Unix--like at all?
Avoid <stdio.h>, <stdlib.h>, <time.h> or ask for help

Introduction to Modern Fortran – p. 59/??

C or C++ is the Master

Calling the Fortran 77 subset almost always safe
Fortran 90 facilities can be used with care

• Don’t use any of Fortran’s standard I /O units
In rare cases, Fortran I /O won’t work at all

If you are very unlucky, ALLOCATE won’t work
That could also cause a few other things to fail

Call C to get at the program environment
For example, GET---COMMAND probably won’t work

Introduction to Modern Fortran – p. 60/??

I/O

Only the master will close files at termination
• The worker must close its files explicitly
That’s generally good practice, even for the master

• Use a unit /file from one language only
Never try to share stdin between languages
Best not to share stdout or stderr, either

The main problem is how to produce diagnostics
You can’t control ones from the run--time systems
Will often get mangled, and may even get lost

Introduction to Modern Fortran – p. 61/??

Shared Output

Can sometimes relax for stdout and stderr
Unix--like systems and GNU--like compilers only
Using stderr and ERROR---UNIT will often work

• Write complete lines and transfer immediately
In Fortran use FLUSH after every transfer
In C, use line buffering (setvbuf/---IOLBF) or flush()

• Never reposition or change any other I /O modes
C++ cerr and stderr or ERROR---UNIT is risky

• Very compiler dependent and may fail horribly

Introduction to Modern Fortran – p. 62/??

Shared Memory Parallelism

• Use threading only in the master language
Compile the worker language using serial options
Remember that threading may call it in parallel

You can use a threaded worker from a serial master
It’s actually how SMP libraries are implemented
Doing that is compiler--dependent and for experts only

• Avoid C++11 threading – ask offline for why
It’s not for use by mere mortals – I would have trouble

• Don’t share I /O across threads/processes

Introduction to Modern Fortran – p. 63/??

MPI and Distributed Memory

Each process runs separately, usually serially

• Using interoperability isn’t a problem

Introduction to Modern Fortran – p. 64/??

Signal Handling

• Never trap an error signal (SIGFPE etc.)
And don’t even think of calling raise or abort
You can trap a non--error signal, set a flag and return

static volatile sig---atomic---t flag ;

void handler (int sig) {
flag = 1 ;

}

(void) signal (SIG---INT , handler) ;

• Beyond that Beware of the Dragons

Introduction to Modern Fortran – p. 65/??

Avoid like the Plague

• I strongly recommend not using C99 <fenv.h>
Interacts horribly with both Fortran and C++ (sic)
The Fortran modules IEEE---... are much saner

But non--trivial use may cause C to misbehave

• Never return across a Fortran procedure
I.e. A ⇒ Fortran B ⇒ C, and C jumps back to A
Whether by setjmp/ longjmp or C++ throw/catch

• And be very cautious when calling POSIX
Far too complicated to describe what is safe

Introduction to Modern Fortran – p. 66/??

	Background
	Why Interoperate with C? (1)
	Why Interoperate with C? (2)
	Merging Applications
	Multi-Program Applications
	Apologia
	A Quiz
	Fortran to C Interoperability
	The C Standard
	Basic Model
	Use of the Module
	Recommended Data Types
	Fortran Default Types
	Function Result Types
	Simple C Functions
	High-Precision Timestamp
	Using the Timestamp
	Arguments
	Interoperable Procedures (1)
	Interoperable Procedures (2)
	Interoperable Procedures (3)
	INTENT(IN)
and const
	Coming Fairly Shortly
	Other Procedures
	Arrays (1)
	Arrays (2)
	CHARACTER (1)
	CHARACTER (2)
	VALUE Arguments
	Anonymous Pointers (1)
	Anonymous Pointers (2)
	Anonymous Pointers (3)
	Horrible Warning
	Anonymous Pointers (4)
	Derived Types (1)
	Derived Types (2)
	Example
	External Data (1)
	External Data (2)
	Complex Numbers
	Other Data Types
	Other C Integer Types
	Procedure Pointers (1)
	Procedure Pointers (2)
	Fortran to C (1)
	Fortran to C (2)
	Fortran to C (3)
	Fortran to C (4)
	C to Fortran
	Practicalities
	Compatible Compilers
	Compilation and Linking
	GNU and Linux on Intel/AMD
	Name Clashes (1)
	Name Clashes (2)
	Fortran and C++
	Fortran is the Master (1)
	Fortran is the Master (2)
	C or C++ is the Master
	I/O
	Shared Output
	Shared Memory Parallelism
	MPI and Distributed Memory
	Signal Handling
	Avoid like the Plague

