
Introduction to Modern Fortran

Advanced Array Concepts

Nick Maclaren

nmm1@cam.ac.uk

March 2014

Introduction to Modern Fortran – p. 1/??

Summary

This will describe some advanced array features
Use them only when you need their facilities

It will also cover some aspects of array use
Important for correctness and performance

There is a lot more on both
• Please ask if you need any help

Introduction to Modern Fortran – p. 2/??

Testing Allocation

Can test if an ALLOCATABLE object is allocated

INTEGER, DIMENSION(:), ALLOCATABLE :: counts
. . .
IF (ALLOCATED(counts)) THEN

. . .

Warning: rules of (de)allocation are non--trivial
Can happen automatically under some circumstances

Generally, restructure your code to not need it

Introduction to Modern Fortran – p. 3/??

Higher Rank Constructors

Constructors create only rank one arrays
We shall now see how to construct higher ranks

It is done by constructing a rank one array
And then mapped using the RESHAPE function

This is very easy, but looks a bit messy

Introduction to Modern Fortran – p. 4/??

The RESHAPE Intrinsic (1)

This allows arbitrary restructuring of arrays
The following is only its very simplest use

RESHAPE (source, shape)

source provides the data in array element order
shape specifies the shape of array to deliver

Introduction to Modern Fortran – p. 5/??

The RESHAPE Intrinsic (2)

REAL, DIMENSION(3, 4) :: array

array = RESHAPE((/ 1.1, 2.1, 3.1, 1.2, 2.2, &
3.2, 1.3, 2.3, 3.3, 1.4, 2.4, 3.4 /), (/ 3, 4 /))

Is functionally equivalent to:

DO m = 1, 3
DO n = 1, 4

array(m, n) = m+0.1*n

END DO
END DO

Introduction to Modern Fortran – p. 6/??

The RESHAPE Intrinsic (3)

It can be used in constant expressions

REAL, DIMENSION(3, 4) :: array = &
RESHAPE((/ 1.1, 2.1, 3.1, 1.2, 2.2, &

3.2, 1.3, 2.3, 3.3, 1.4, 2.4, 3.4 /), (/ 3, 4 /))

It also allows arbitrary reordering
And padding with copies of an array

See the references for more details

Introduction to Modern Fortran – p. 7/??

Example

Create the zero vector, and the three unit vectors

REAL, DIMENSION(1:3), PARAMETER :: &
vec---0 = (/ 0.0, 0.0, 0.0 /), &

vec---i = (/ 1.0, 0.0, 0.0 /), &

vec---j = (/ 0.0, 1.0, 0.0 /), &

vec---k = (/ 0.0, 0.0, 1.0 /)

Create the identity matrix

REAL, DIMENSION(1:3, 1:3), PARAMETER :: &
identity = RESHAPE((/ vec---i, vec---j, vec---k /), (/ 3, 3 /))

Introduction to Modern Fortran – p. 8/??

RESHAPE More Generally

It isn’t restricted to multi--dim. constants
You can use it for fancy array restructuring

• Study the specification before doing that
Restructuring arrays is dangerous territory

• And there are several other such intrinsics
I.e. ones with important uses but no simple uses

Introduction to Modern Fortran – p. 9/??

Vector Indexing (1)

Vectors may be used as indices

INTEGER, DIMENSION(1:5) :: &
j = (/ 3, 1, 5, 2, 4 /), k = (/ 2, 3, 2, 1, 3 /)

REAL, DIMENSION(1:5) :: x, &
y = (/ 1.2, 2.3, 3.4, 4.5, 5.6 /)

x(j) = y(k)
PRINT *, y(k)

PRINT *, x

2.3000000 3.4000001 2.3000000 1.2000000 3.4000001
3.4000001 1.2000000 2.3000000 3.4000001 2.3000000

Introduction to Modern Fortran – p. 10/??

Vector Indexing (2)

Using vector indices is a bit like sections
There are important differences – be careful

You can them for reading arrays quite safely
Elements must be distinct if updating

• NOT recommended for use in arguments
If used in arguments, those must not be updated
And it forces the compiler to copy the array

Introduction to Modern Fortran – p. 11/??

Masked Assignment (1)

Set all negative values in an array A to zero

REAL, DIMENSION(20, 30) :: array

DO j = 1,30
DO k = 1,20

IF (array(k,j) < 0.0) array(k,j) = 0.0
END DO

END DO

But the WHERE statement is more convenient

WHERE (array < 0.0) array = 0.0

Introduction to Modern Fortran – p. 12/??

Masked Assignment (2)

It has a statement construct form, too

WHERE (array < 0.0)
array = 0.0

ELSE WHERE
array = 0.01*array

END WHERE

Masking expressions are LOGICAL arrays
You can use an actual array there, if you want
Masks and assignments need the same shape

Introduction to Modern Fortran – p. 13/??

Masked Assignment (3)

Fortran 2003 extends it considerably

Don’t use LHS arrays in non--elemental functions
The following is asking for trouble:

WHERE (arr1 < arr2)
arr1 = 1.0

ELSE WHERE
arr2 = sum(arr1)

END WHERE

• Don’t bother with the FORALL statement

Introduction to Modern Fortran – p. 14/??

Memory Efficiency (1)

Local arrays can be implemented in many ways
Only a few Ada compilers handle them properly

You can exhaust your program’s stack with them
Too big, or too many due to deep recursion
• It will usually cause a truly horrible crash

Allocatable arrays always go on the ‘heap’
Automatic arrays often go on the ‘heap’
That is less efficient, but is handled much better

• Making all big arrays allocatable isn’t stupid

Introduction to Modern Fortran – p. 15/??

Memory Efficiency (2)

As always, every solution has its own problems
Lots of allocation and deallocation isn’t ideal

• Each (de)allocation costs some CPU time
Not generally a problem for Fortran programs

• Poor compilers may have memory leaks
Most Fortran compilers don’t have them badly

Both because of the language’s restrictions

Introduction to Modern Fortran – p. 16/??

Memory Efficiency (3)

• The big problem is memory fragmentation
Describing how and why is beyond this course
Luckily, in AD 2007, there is a simple solution

• Best one is to use 64--bit addressing
Gets rid of the worst of the problems, painlessly
I do that, even on systems with 2 GB of memory

• Please ask if you want to know more

Introduction to Modern Fortran – p. 17/??

Order of Evaluation (1)

Array assignments etc. are like implicit loops
But, except in I /O, no order of evaluation implied
Also the behaviour is different when modifying

• Each pass of a loop is executed in order
• Array assignments do it all ‘‘in parallel’’

• You should avoid code where it matters
The compiler may have to copy the array
It risks confusion when tuning your code

Introduction to Modern Fortran – p. 18/??

Order of Evaluation (2)

INTEGER, DIMENSION(5) :: array = (/ 1, 2, 3, 4, 5 /)
array(2:5) = array(1:4)
PRINT *, array

array = (/ 1, 2, 3, 4, 5 /)
DO k = 1,4

array(k+1) = array(k)
END DO
PRINT *, array

1 1 2 3 4
1 1 1 1 1

Introduction to Modern Fortran – p. 19/??

Performance (1)

• Efficient use of arrays is critical
This course has NOT taught any of that
It covers quite enough without adding it!

• Generally, follow this procedure:

Start by writing clean and clear code
Get it working, and test it fairly thoroughly
If too slow, use a profiler to see where
And only then tune only those aspects

Introduction to Modern Fortran – p. 20/??

Performance (2)

You get most gain by using faster methods
Followed by the following aspects:

• Improve the layout and access patterns
This is locality (improved cache usage etc.)

• Avoid unnecessary array copying
Compilers often have to do that for some codes
Some compilers copy when they don’t need to

• Improve the actual CPU efficiency
This is getting into advanced tuning

Introduction to Modern Fortran – p. 21/??

Memory Locality (1)

Things used together should be stored together
Remember that ‘‘first index varies fastest’’

REAL, DIMENSION(3000, 5000) :: array
DO n = 1, 5000

DO m = 1, 3000
array(m, n) = m+0.1*n

END DO
END DO

• Note that the first index varies fastest

Introduction to Modern Fortran – p. 22/??

Memory Locality (2)

Sections and masking can cause trouble

REAL, DIMENSION(1000, 1000) :: array
CALL FRED(array(123, :))

The elements of the vector are a long way apart
A problem if FRED accesses it a lot

• Consider making a temporary copy of it

Introduction to Modern Fortran – p. 23/??

Access Patterns

• Sequential access is generally efficient
Avoid non--sequential access whereever possible

• This can be much slower than sequential

REAL, DIMENSION(1000) :: arr1, arr2
INTEGER, DIMENSION(1000) :: random
arr1(random) = arr2(random)

Introduction to Modern Fortran – p. 24/??

Unnecessary Copying (1)

It is hard to describe when this may occur
It helps if you can mentally compile the code

• Avoiding using the LHS array on the RHS
Except when the uses are purely elemental

• Generally, sections do not need a copy
Unlike arguments with vector indexed arrays

• Compilers often do unnecessary copying
In a very bad case, even for CALL Fred(data(:))

Introduction to Modern Fortran – p. 25/??

Example

INTEGER :: arr1(1:50), arr2(1:100), arr3(1:100)
REAL, DIMENSION(20, 20) :: mat1, mat2, mat3

These shouldn’t require a copy

arr1 = arr1+arr2(1:50)+arr3(arr2(51:100))
mat1 = MATMUL(mat2, mat3)

But these almost certainly will

arr1 = arr1(::--1)+arr2(1:50)
mat1 = MATMUL(mat1, mat2)

Introduction to Modern Fortran – p. 26/??

Unnecessary Copying (2)

And, while this shouldn’t, ...

mat1 = mat1 + MATMUL(mat2, mat3)

There is more on this under procedures

• Generally, don’t worry unless you have to
If your program runs fast enough, who cares?

• If not, time and profile it first
Ask for advice if you have problems

Introduction to Modern Fortran – p. 27/??

High-Performance Problems

There are some other problems some people hit
Too complicated to even describe here

• Ignore them until you have problems
Then ask for help with tackling them

Buzzwords and phrases include:

TLB thrashing
Cache conflicts
False sharing
Memory banking

Introduction to Modern Fortran – p. 28/??

Reminder

• You don’t have to remember all of this

• Start by using the simplest features only

• Use the fancy ones only when you need them
If you know they exist, you can look them up

Introduction to Modern Fortran – p. 29/??

	Summary
	Testing Allocation
	Higher Rank Constructors
	The RESHAPE Intrinsic (1)
	The RESHAPE Intrinsic (2)
	The RESHAPE Intrinsic (3)
	Example
	RESHAPE More Generally
	Vector Indexing (1)
	Vector Indexing (2)
	Masked Assignment (1)
	Masked Assignment (2)
	Masked Assignment (3)
	Memory Efficiency (1)
	Memory Efficiency (2)
	Memory Efficiency (3)
	Order of Evaluation (1)
	Order of Evaluation (2)
	Performance (1)
	Performance (2)
	Memory Locality (1)
	Memory Locality (2)
	Access Patterns
	Unnecessary Copying (1)
	Example
	Unnecessary Copying (2)
	High-Performance Problems
	Reminder

