
Introduction to Modern Fortran

Advanced Use Of Procedures

Nick Maclaren

nmm1@cam.ac.uk

March 2014

Introduction to Modern Fortran – p. 1/??

Summary

We have omitted some important concepts
They are complicated and confusing

There are a lot of features we have omitted
Mostly because they are hard to use correctly
And sometimes because they are inefficient

This lecture covers some of the most important
• Refer to this when you need to

Introduction to Modern Fortran – p. 2/??

ALLOCATABLE and POINTER

You can pass ALLOCATABLE and POINTER arrays
In the usual case, the procedure has neither
The dummy argument is associated with the data

• You can’t reallocate or redirect in the procedure

To do that, declare the dummy argument as
ALLOCATABLE or POINTER, as appropriate

Warning for INTENT(OUT) and ALLOCATABLE:

These are deallocated on entry, even if not used

Introduction to Modern Fortran – p. 3/??

Association (1)

Fortran uses argument association in calls
Dummy arguments refer to the actual ones

• You don’t need to know exactly how it is done
It may be aliasing or copy--in/copy--out

Expressions are stored in a hidden variable
The dummy argument is associated with that
• It obviously must not be updated in any way

Using INTENT is strongly recommended

Introduction to Modern Fortran – p. 4/??

Association (2)

REAL, DIMENSION(1:10, 1:20, 1:3) :: data
CALL Fred (data(:, 5:15, 2), 1.23*xyz)

SUBROUTINE Fred (array, value)
REAL, DIMENSION(:, :) :: array
REAL, INTENT(IN) :: value

array in fred refers to data(:, 5:15, 2)
value refers to a location containing 1.23*xyz

Introduction to Modern Fortran – p. 5/??

Updating Arguments (1)

A dummy argument must not be updated if:
• The actual argument is an expression
• It overlaps another argument in any way

REAL, DIMENSION(1:20, 1:3) :: data
CALL Fred (data(5:15, 2), data(17:, 2))

SUBROUTINE Fred (arr1, arr2)
REAL, DIMENSION(:) :: arr1, arr2
arr1 = 1.23 ; arr2 = 4.56

• The above works as you expect

Introduction to Modern Fortran – p. 6/??

Updating Arguments (2)

REAL, DIMENSION(1:20, 1:3) :: data
CALL Fred (data(5:15, 2), data(1:10, 2))

SUBROUTINE Fred (arr1, arr2)
REAL, DIMENSION(:) :: arr1, arr2
arr2(1, 1) = 4.56

• The above is not allowed
Because arr1 and arr2 overlap

Even though arr2(1, 1) is not part of arr1

Introduction to Modern Fortran – p. 7/??

Updating Arguments (3)

REAL :: X
CALL Fred (X + 0.0)

SUBROUTINE Fred (Y)
Y = 4.56

• The above is not allowed -- obviously

• That also applies to array expressions
Vector indexing behaves like an expression

Introduction to Modern Fortran – p. 8/??

Warning for C/C++ People

REAL, DIMENSION(1:20) :: data
CALL Fred (data(2), data)

SUBROUTINE Fred (var, array)
REAL :: var
REAL, DIMENSION(:) :: array
array = 4.56

• The above is not allowed, either

Even array elements are associated

Introduction to Modern Fortran – p. 9/??

Using Functions

Functions are called just like built--in ones
They may be optimised in similar ways

REAL :: scale, data(1000)
. . .

READ *, scale ! assume that this reads 0.0
Z = Variance(data)/(scale+Variance(data)}

Variance may be called 0, 1 or 2 times

Introduction to Modern Fortran – p. 10/??

Impure Functions

Pure functions have defined behaviour
• Whether they are declared PURE or not

Impure functions occasionally misbehave
Generally, because they are over--optimised

There are rules for safety in practice
But they are too complicated for this course

• Ask if you need help with this

Introduction to Modern Fortran – p. 11/??

FUNCTION Result Variable

The function name defines the result variable
You can change this if you prefer

FUNCTION Variance---of---an---array (Array) RESULT(var)

REAL :: var
REAL, INTENT(IN), DIMENSION(:) :: Array
var = SUM(Array)/SIZE(Array)
var = SUM((Array--var)**2)/SIZE(Array)

END FUNCTION Variance---of---an---array

REAL, DIMENSION(1000) :: data
. . .

Z = Variance---of---an---array(data)

Introduction to Modern Fortran – p. 12/??

PURE Subroutines

You can declare a subroutine to be PURE

Like functions, but with one fewer restriction
INTENT(OUT) and INTENT(INOUT) are allowed

PURE SUBROUTINE Init (array, value)
REAL, DIMENSION(:), INTENT(OUT) :: array
REAL, INTENT(IN) :: value
array = value

END SUBROUTINE Init

They can be declared as ELEMENTAL, too

Introduction to Modern Fortran – p. 13/??

Recursion

Fortran 90 allowed this for the first time
Recursive procedures must be declared as such
• If you don’t, recursion may cause chaos

RECURSIVE SUBROUTINE Chop (array, value)
. . .

• Avoid it unless you actually need it

• Check all procedures in the recursive loop

Introduction to Modern Fortran – p. 14/??

OPTIONAL Arguments

• Use OPTIONAL for setting defaults only
On entry, check and copy ALL args
Use ONLY local copies thereafter
Now, all variables are well defined when used

• Can do the converse for optional results
Just before returning, check and copy back

• Beyond this should be done only by experts

Introduction to Modern Fortran – p. 15/??

OPTIONAL Example (1)

FUNCTION fred (alf, bert)
REAL :: fred, alf, mybert
REAL, OPTIONAL, INTENT(IN) :: bert
IF (PRESENT(bert)) THEN

mybert = bert
ELSE

mybert = 0.0
END IF

Now use mybert in rest of procedure

Introduction to Modern Fortran – p. 16/??

OPTIONAL Example (2)

SUBROUTINE fred (alf, bert)
REAL :: alf
REAL, OPTIONAL, INTENT(OUT) :: bert
...
IF (PRESENT(bert)) bert = ...
END SUBROUTINE fred

Introduction to Modern Fortran – p. 17/??

Fortran 2003

Adds potentially useful VALUE attribute
See OldFortran course for information

Seriously. It’s also useful for conversion

And the PROCEDURE declaration statement
A cleaner and more modern form of EXTERNAL
Its usage is not what you would expect, though

And probably more ...

Introduction to Modern Fortran – p. 18/??

Arrays and CHARACTER

We have over--simplified these so far
No problem, if you use only recommended style

• You need to know more if you go beyond that

• We start by describing what you can do
Including some warnings about efficient use

And then continue with how it actually works

Introduction to Modern Fortran – p. 19/??

Array Valued Functions

Arrays are first--class objects in Fortran
Functions can return array results

• In practice, doing so always needs a copy
However, don’t worry too much about this

Declare the function just as for an argument
The constraints on the shape are similar

• If it is too slow, ask for advice

Introduction to Modern Fortran – p. 20/??

Example

This is a bit futile, but shows what can be done

FUNCTION operate (mat1, mat2, mat3)
IMPLICIT NONE
REAL, DIMENSION(:, :), INTENT(IN) :: &

mat1, mat2, mat3
REAL, DIMENSION(UBOUND(mat1, 1), &

UBOUND(mat2, 2)) :: operate
! Checking omitted, again

operate = MATMUL(mat1, mat2) + mat3
END FUNCTION operate

Introduction to Modern Fortran – p. 21/??

Array Functions and Copying

The result need not be copied on return
The interface provides enough information
In practice, don’t bet on it ...

Array functions can also fragment memory
Ask if you want to know how and why

• Generally a problem only for HPC
I.e. when either time or memory are bottlenecks

Introduction to Modern Fortran – p. 22/??

What Can Be Done

• Just use array functions regardless
If you don’t have a problem, why worry?

• Time and profile your program
Tune only code that is a bottleneck

• Rewrite array functions as subroutines
I.e. turn the result into an argument

• Use ALLOCATABLE results (sic)

• Ask for further advice with tuning

Introduction to Modern Fortran – p. 23/??

CHARACTER And Copying

In this respect, CHARACTER ≡ array
Most remarks about arrays apply, unchanged

• But it is only rarely important

Fortran is rarely used for heavy character work
It works fairly well, but it isn’t ideally suited
Most people find it very tedious for that

• If you need to, ask for advice

Introduction to Modern Fortran – p. 24/??

Character Valued Functions (1)

Earlier, we considered just one form
Almost anything more needs a copy
Some compilers will copy even those

• Often, the cost of that does not matter

You are not restricted to just that form
Declare the function just as for an argument
The constraints on the shape are similar

• If it is too slow, ask for advice

Introduction to Modern Fortran – p. 25/??

Character Valued Functions (2)

The result length can be taken from an argument

FUNCTION reverse---word (word)

IMPLICIT NONE
CHARACTER(LEN=*), INTENT(IN) :: word

CHARACTER(LEN=LEN(word)) :: reverse---word

INTEGER :: I, N
N = LEN(word)
DO I = 1, N

reverse---word(I:I) = word(N+1--I:N+1--I)

END DO
END FUNCTION reverse---word

Introduction to Modern Fortran – p. 26/??

Character Valued Functions (3)

This is a bit futile, but shows what can be done
The result length is a non--trivial expression

FUNCTION interleave (text1, count, text2)
IMPLICIT NONE

CHARACTER(LEN=*), INTENT(IN) :: text1, text2

INTEGER, INTENT(IN) :: count
CHARACTER(LEN=LEN(text1)+count+ &

LEN(text2)) :: interleave
interleave = text1 // REPEAT(’ ’, count) // text2

END FUNCTION interleave

Introduction to Modern Fortran – p. 27/??

Explicit/Assumed Size/Shape (1)

• The good news is that everything works
Can mix assumed and explicit ad lib.

There are some potential performance problems
• Passing assumed to explicit forces a copy

• It can be a problem calling some libraries
Especially ones written in old Fortran

• Write clean code, and see if it is fast enough
If you find that it isn’t, ask for advice

Introduction to Modern Fortran – p. 28/??

Explicit/Assumed Size/Shape (2)

This code is not a problem:

SUBROUTINE Weeble (matrix)
REAL, DIMENSION(:, :) :: matrix

END SUBROUTINE Weeble

SUBROUTINE Burble (space, M, N)
REAL, DIMENSION(M, N) :: space
CALL Weeble(space)

END SUBROUTINE Burble

REAL, DIMENSION(100,200) :: work
CALL Burble(work, 100, 200)

Introduction to Modern Fortran – p. 29/??

Explicit/Assumed Size/Shape (3)

Nor even something as extreme as this:

SUBROUTINE Weeble (matrix)
REAL, DIMENSION(:, :) :: matrix

END SUBROUTINE Weeble

SUBROUTINE Burble (space, N, J1, K1, J2, K2)
REAL, DIMENSION(N, *) :: space

CALL Weeble(space(J1:K1, J2:K2))
END SUBROUTINE Burble

REAL, DIMENSION(100, 200) :: work
CALL Burble(work, 100, 20, 80, 30, 70)

Introduction to Modern Fortran – p. 30/??

Explicit/Assumed Size/Shape (4)

But this code forces a copy:

SUBROUTINE Bubble (matrix, M, N)
REAL, DIMENSION(M, N) :: matrix

END SUBROUTINE Bubble

SUBROUTINE Womble (space)
REAL, DIMENSION(:, :) :: space
CALL Bubble(space, UBOUND(space, 1), &

UBOUND(space, 2))
END SUBROUTINE Womble

REAL, DIMENSION(100,200) :: work
CALL Womble(work)

Introduction to Modern Fortran – p. 31/??

Example – Calling LAPACK

LAPACK is written in Fortran 77
It cannot handle assumed shape arrays
So here is how to call SPOTRF (Cholesky)

SUBROUTINE Chol (matrix, info)
REAL, DIMENSION(:, :), INTENT(INOUT) :: matrix

INTEGER, INTENT(INOUT) :: info
CALL SPOTRF(’L’, UBOUND(matrix, 1), &

matrix, UBOUND(matrix, 1), info)
END SUBROUTINE Chol

matrix will be copied on call and return

Introduction to Modern Fortran – p. 32/??

Sequence Association (1)

Have covered assumed shape and char. length
And explicit shape and char. length

but only when the dummy and actual match

• That constraint is not required (nor checked)

You need to know an extra concept to go further
That is called sequence association

• You are recommended to go cautiously here
Don’t do it until you are confident with Fortran

Introduction to Modern Fortran – p. 33/??

Sequence Association (2)

Explicit shape and assumed size arrays only
If the dummy and actual bounds do not match

Argument is flattened in array element order
And is given a shape by the dummy bounds
Exactly the way the RESHAPE intrinsic works

There are important uses of this technique
• Or you can shoot yourself in the foot

Introduction to Modern Fortran – p. 34/??

Example

SUBROUTINE operate---1 (vector, N)

REAL, DIMENSION(N) :: vector
. . .

SUBROUTINE operate---2 (matrix, M, N)

REAL, DIMENSION(M, N) :: matrix
. . .

REAL, DIMENSION(1000000) :: workspace
. . .
IF (cols = 0) THEN

CALL operate---1(workspace, rows)

ELSE
CALL operate---2(workspace, rows, cols)

END IF
Introduction to Modern Fortran – p. 35/??

Sequence Association (3)

The same holds for explicit length CHARACTER
Everything is concatenated and then reshaped

Character lengths are like an extra dimension
Naturally, it varies faster than the first index

One restriction needed to make this work
Assumed shape arrays of CHARACTER

need assumed length or matching lengths

Introduction to Modern Fortran – p. 36/??

Example

SUBROUTINE operate (fields, N)
CHARACTER(LEN=8), DIMENSION(10, N) :: fields

END SUBROUTINE operate

CHARACTER(LEN=80), DIMENSION(1000) :: lines
. . .
! Read in N lines
CALL operate(lines, N)

Introduction to Modern Fortran – p. 37/??

Implicit Interfaces (1)

Calling an undeclared procedure is allowed
The actual arguments define the interface

• I strongly recommend not doing this
Mistyped array names often show up as link errors

REAL, DIMENSION(1000) :: lines
. . .
lines(5) = lones(7)

Undefined symbol lones--- in file test.o

Introduction to Modern Fortran – p. 38/??

Implicit Interfaces (2)

Only Fortran 77 interface features can be used
The args and result must be exactly right
Must declare the result type of functions

REAL, DIMENSION(KIND=dp) :: DDOT
. . .
X = DDOT(array)

• This is commonly done for external libraries
I.e. ones that are written in Fortran 77, C etc.

• Interface modules are a better way

Introduction to Modern Fortran – p. 39/??

EXTERNAL

This declares an external procedure name

It’s essential only when passing as argument
I.e. if the procedure name is used but not called

• I recommend it for all undeclared procedures
More as a form of documentation than anything else

• But explicit interfaces are always better

Introduction to Modern Fortran – p. 40/??

Example

Here is the LAPACK example again

SUBROUTINE Chol (matrix, info)
REAL, DIMENSION(:, :), INTENT(INOUT) :: matrix

INTEGER, INTENT(INOUT) :: info
EXTERNAL :: SPOTRF
CALL SPOTRF(’L’, UBOUND(matrix, 1), &

matrix, UBOUND(matrix, 1), info)
END SUBROUTINE Chol

Introduction to Modern Fortran – p. 41/??

	Summary
	ALLOCATABLE and POINTER
	Association (1)
	Association (2)
	Updating Arguments (1)
	Updating Arguments (2)
	Updating Arguments (3)
	Warning for C/C++ People
	Using Functions
	Impure Functions
	FUNCTION Result Variable
	PURE Subroutines
	Recursion
	OPTIONAL Arguments
	OPTIONAL Example (1)
	OPTIONAL Example (2)
	Fortran 2003
	Arrays and CHARACTER
	Array Valued Functions
	Example
	Array Functions and Copying
	What Can Be Done
	CHARACTER And Copying
	Character Valued Functions (1)
	Character Valued Functions (2)
	Character Valued Functions (3)
	Explicit/Assumed Size/Shape (1)
	Explicit/Assumed Size/Shape (2)
	Explicit/Assumed Size/Shape (3)
	Explicit/Assumed Size/Shape (4)
	Example -- Calling LAPACK
	Sequence Association (1)
	Sequence Association (2)
	Example
	Sequence Association (3)
	Example
	Implicit Interfaces (1)
	Implicit Interfaces (2)
	EXTERNAL
	Example

