
Message-Passing and MPI Programming

Using MPI

N.M. Maclaren

nmm1@cam.ac.uk

July 2010

2.1 Working With MPI

There are a huge number of minor points that need mentioning, including all of the ‘
housekeeping’ facilities. You do not need to remember all of the details, initially, but try
to remember which facilities are included and refer back to this document when doing the
practicals. It is a lot easier than it looks at first!

By default, all actual errors are fatal, and MPI will produce some kind of an error
message. With luck, the whole program will then stop – if you are unlucky, some processes
may hang and you will have to kill them by hand. You can ask to do your own error
handling, and that is described later.

You should use one interface: i.e. Fortran or C. The MPI Forum now supports C++
programmers only by allowing MPI’s C interface to be called, possibly by using ‘extern
"C"’, and this is what this course now teaches. Calling MPI using both its Fortran or C
interfaces in the same program is possible, but it is advanced use and is not covered by
this course.

In the extra (online) materials, there are files containing proformas for all functions
used in the examples or in the practicals; anything merely mentioned but not described
is omitted, for clarity. The files are Interfaces/Fortran and Interfaces/C. The course
does not give the syntax in detail, so check those files when doing the practicals.

2.2 MPI’s Fortran Interface

If possible, include the statement USE mpi at the start of the main program, any module
and any external subroutine or function. If not, use INCLUDE ’mpif.h’ after all “USE”
statements and “IMPLICIT” in the same places. Note that the first is “mpi” and the second
“mpif.h”. If both of these fail, it usually means that you have a usage or installation
problem, such as not having set search paths correctly.

All MPI names start with MPI . Do not declare your own names starting MPI or PMPI ;
names starting PMPI are used for profiling.

Boolean values (i.e. ones that are true or false) are LOGICAL.

Process numbers, error codes etc. are INTEGER.

Element counts etc. are also plain INTEGER – this is not a problem on any current
system.

Almost all MPI constants are Fortran constants (PARAMETER); the only exception men-
tioned in this course is MPI IN PLACE.

1

Arrays start at one, where it matters.

Type-generic (“choice arguments” in MPI’s terms) arguments are a kludge – MPI relies
on Fortran not checking the types. The course will describe some of the issues later. MPI
3 and Fortran TS 29113 fixes this issue properly. For now, just pass arrays of any type –
if the compiler objects, ask a Fortran expert for help.

Handles (e.g. communicators) are opaque types; those are ones you cannot break apart
and look inside. In Fortran, they are undocumented and unpredictable INTEGER values.
You can test them for (in)equality and assign them using Fortran’s built-in operations, but
call the appropriate MPI functions for all other operations. Another way of viewing this
is that MPI returns such values as INTEGER tokens; if two such values match, they are the
same token, but nothing more is specified about their values.

Almost all MPI functions are subroutines, and the final argument returns an INTEGER

error code. Success returns MPI SUCCESS, which is always zero; failure codes are imple-
mentation dependent. Their results are returned through arguments. There are only a
very few exceptions, and the only one that most people will use is MPI Wtime.

As people will know, Fortran’s default REAL is a disaster for most scientific program-
ming, and DOUBLE PRECISION is tedious and out-of-date. You should start all procedures,
modules etc. with something like:

USE double

USE mpi

IMPLICIT NONE

There is a suitable file to create the double module in Programs/double.f90; you
should ask for help if you do not know how to use it.

2.3 MPI’s C Interface

You need to include the statement #include "mpi.h". For C, that is all you need to
do, and it may work for C++.

If it does not work in a C++ program, the simplest solution is to try:

extern "C" {

#include "mpi.h"

}

Another approach is to put your MPI code into a separate file of C source (typically
ending .c), write that file in pure C, and compile it using a C compiler that is compatible
with your C++ one. You can then use extern "C" to use that file from your C++.

All C names start with MPI . Do not declare your own names starting MPI or PMPI ;
names starting PMPI are used for profiling.

Boolean values (i.e. ones that are true or false) are int, as usual.

Process numbers, error codes etc. are int.

Element counts etc. are also plain int – this is not a problem on any current system.

Type-generic arguments (“choice arguments” in MPI’s terms) are void * pointers.

2

Almost all MPI constants are C initialization expressions, but not usually preprocessor

constants or integer constants, so they cannot be used in case, array sizes etc. Only the
maximum sizes are preprocessor constants.

Arrays start at zero, where it matters.

Handles (e.g. communicators) are opaque types; their names are set up by typedef

and are scalars. You can test them for (in)equality and assign them using C’s built-in
operations, but call the appropriate MPI functions for all other operations. The main
such opaque types are MPI Comm, MPI Datatype, MPI Errhandler, MPI Group, MPI Op,
MPI Request and MPI Status. Another way of viewing this is that MPI returns such
values as tokens; if two such values match, they are the same token, but nothing more is
specified about their types or values.

Almost all MPI functions have an int result type, and return an error code. You
can ignore it, as usual in C, if you are using default error handling. Success returns
MPI SUCCESS, which is always zero; failure codes are implementation dependent. Their
results are returned through pointer arguments. There are only a very few exceptions,
and the only one that most people will use is MPI Wtime.

2.4 MPI’s C++ Interface

MPI 2.0 introduced a C++ interface in 1997, which significantly better in a great
many respects; it was a “proper” C++ one, not just a hacked C one, and that caused
mainentance problems. For that reason, MPI 2.2 deprecated it in 2009, and MPI 3.0
deleted in in 2012. Its recommendation is to use the C interface from C++, and this is
what this course teaches.

2.5 MPI Setup

For now, we will ignore error handling. All processes must start by calling MPI Init

and, normally, all finish by calling MPI Finalize. These are effectively collectives, and
you should call both of them at predictable times, or risk confusion. Youmust not restart
MPI after MPI Finalize – i.e. MPI Init must be called exactly once.

3

Fortran:

Fortran argument decoding is done behind the scenes, so the following is all you need.

USE double

USE mpi

IMPLICIT NONE

INTEGER :: error

CALL MPI_Init (error)

< do the actual work >

CALL MPI_Finalize (error)

END

If that does not work, see the installation notes, or ask for help.

C:

MPI Init takes the addresses of main’s arguments, not the arguments themselves.
You must call it before decoding them, because some implementations change them in
MPI Init.

#include "mpi.h"

int main (int argc , char * argv []) {

MPI_Init (& argc , & argv) ;

< do the actual work >

MPI_Finalize () ;

return 0 ;

}

Aside: Examples

All of the examples will omit the following statements, for brevity:

Fortran:
USE double

USE mpi

IMPLICIT NONE

C:
#include "mpi.h"

Include them in any “module” where you use MPI (where “module” includes Fortran
external procedures and C/C++ files). You are strongly advised not to rely on implicit
declaration – it often works in one implementation, and fails on another.

2.6 MPI State and Constants

MPI 1.2 and up provide version number information; it is rarely needed, except when
investigating errors. There are constants MPI VERSION and MPI SUBVERSION. These are
set to 1 and 3 for MPI 1.3 or 2 and 2 for the current version, MPI 2.2. There is also a
function MPI Get version, which can be called even before MPI Init.

4

You can test the state of MPI in a process – this is normally needed only when
writing library code. MPI Initialized returns whether MPI has been initialised, and
MPI Finalized tests whether it has been finalised.

Fortran:
LOGICAL :: started , stopped

INTEGER :: error

CALL MPI_Initialized (started , error)

CALL MPI_Finalized (stopped , error)

C:
int started , stopped , error ;

error = MPI_Initialized (& started) ;

error = MPI_Finalized (& stopped) ;

The global communicator is predefined: MPI COMM WORLD. It includes all usable pro-
cesses – e.g. the <n> set up by “mpiexec -n <n>”. Many applications use only this com-
municator, almost all of this course does, too. There is one lecture on communicators.

The rank is the process’s index within the context of a communicator (i.e. a process
may have different ranks in different communicators). It is an integer from 0 to <n>-1, in
all languages, including Fortran. There is one predefined rank constant: MPI PROC NULL,
meaning “no such process”. Do not assume either that this is negative or that it is not!
We shall describe the use of it when it becomes relevant.

2.7 Information Calls

MPI Comm size returns the number of processes, and MPI Comm rank returns the local
process number (i.e. the rank).

Fortran:
INTEGER :: nprocs , myrank , error

CALL MPI_Comm_size (MPI_COMM_WORLD , nprocs , error)

CALL MPI_Comm_rank (MPI_COMM_WORLD , myrank , error)

C:
int nprocs , myrank , error ;

error = MPI_Comm_size (MPI_COMM_WORLD , & nprocs) ;

error = MPI_Comm_rank (MPI_COMM_WORLD , & myrank) ;

You can query the local processor name, and this stores it in a character array of length
MPI MAX PROCESSOR NAME. This applies to C as well as Fortran – it does not return a C
string.

Fortran:
CHARACTER (LEN = MPI_MAX_PROCESSOR_NAME) :: procname

INTEGER :: namelen , error

CALL MPI_Get_processor_name (procname , namelen , error)

C:
char procname [MPI_MAX_PROCESSOR_NAME + 1] ;

int namelen , error ;

5

error = MPI_Get_processor_name (procname , & namelen) ;

procname [namelen] = ’\0’ ;

MPI Wtime gives the elapsed time (i.e. the “wall-clock time”), in seconds since an un-
specified starting point. The starting point is fixed for a process and does not change
while the process is running. I have seen the start of process, the system boot time, the
Unix epoch and 00:00 Jan. 1st 1900; always use the difference between values and not
the actual values. MPI Wtick is similar but gives the timer resolution (i.e. precision); few
people bother with it, but it is there if you want it.

Fortran:
REAL(KIND=KIND(0.0D0)) :: now

now = MPI_Wtime ()

C:
double now ;

now = MPI_Wtime () ;

You can use the information calls anywhere following the call to MPI Init and preceding
the call to MPI Finalize. They are all purely local operations, so use them as often as you
need them. MPI Comm size will give the same result on all processes, but all of the others
may give different results on each process. That includes MPI Wtime’s starting point as
well as the value returned from MPI Wtick.

2.8 Other Important Utilities

MPI Barrier synchronises all processes. They all wait until they have all entered the
call, and then they all start up again, and continue executing independently. This is the
only collective that synchronises in that way; we will come back to synchronisation later.

Fortran:
INTEGER :: error

CALL MPI_Barrier (MPI_COMM_WORLD , error)

C:
int error ;

error = MPI_Barrier (MPI_COMM_WORLD) ;

MPI Abort is the emergency stop; you should always call it on MPI COMM WORLD, though
MPI does not require that. It is not a collective but should stop all processes – and, on
most systems, it usually does. Outstanding file output is often lost, and it is far better
to stop normally, if at all possible (i.e. all processes should call MPI Finalize and exit
normally). MPI Abort is the emergency stop!

Fortran:
INTEGER :: error

CALL MPI_Abort (MPI_COMM_WORLD , <failure code> , error)

6

C:
int error ;

error = MPI_Abort (MPI_COMM_WORLD , <failure code>) ;

2.9 Practical Use of MPI

I/O in parallel programs is always tricky, and it is worse in MPI, because of MPI’s
portability. Each type of parallel system has different oddities, and implementations are
incredibly variable. For now, you should just write to stdout or stderr (and the default
output unit in Fortran, of course); it will work well enough for the examples. Lines may
be interleaved with each other in strange ways, but ignore that. We will come back to
using I/O later.

You can actually do quite a lot with just the MPI facilities taught so far. The practical
exercises start by asking you to write a trivial test program, and then writing a command
spawner. The latter is very useful, and there are several around – some practical uses
of MPI really are that simple! If you have trouble with this, it will be be in using your
language, not in MPI – if that is the case, just skip the exercise.

Compiling and running is all very implementation-dependent, of course, but something
like this works on most systems:

• Compile and link using mpif90, mpicc or mpiCC, as appropriate.

• Run using “mpiexec -n <n> <program> [args ...]”, where <n> is the number of
processes to use.

When using a job scheduler (i.e. queuing system), you may need to put the latter in a
script. As a reminder, this course will use MPI only in SPMD mode.

7

