Message-Passing and MPI Programming

Communicators etc.

N.M. Maclaren

nmml@cam.ac.uk

July 2010

7.1 Basic Concepts

A group is a set of process identifiers; programs view them as integers in the range
0...(size-1), where size is the number of processes in the communicator.

A context is the communication environment, including information about the number
of processes and their locations; separate contexts are entirely independent. Programs do
not and cannot view contexts directly.

A communicator is a group plus a context, so separate communicators are independent,
even if they have the same group of processes. Normally, we work solely on communicators.

There are several predefined communicators, and you should use these when appropriate:
e MPI_COMM_WORLD is all processes together.
e MPI_COMM_SELF is just the local process.

e MPI_COMM_NULL is an invalid communicator, and is used as an error result from
several functions.

Most people use only MPI_COMM_WORLD, and we covered information calls in the first
lecture, including MPI_Comm_rank and MPI_Comm_size. Why do we need to go beyond
that?

e You need to use collectives on only some processes
e You need to do a task on only some processes
e You want to do several tasks in parallel

We can do those messily by using point-to-point, or by creating new, subset communi-
cators. This lecture describes how to do the latter.

7.2 Use of Communicators

Despite their independence, you should avoid using two communicators that overlap,
including using one together with a subset of itself. Clean up the activities on before
starting the other. MPI will not get confused, but you and I will — and do not even think
of trying to tune such a mess!

You should design your communicator use to be hierarchical, exactly like recursion in
groups of processes. This is easier to show using figures than to describe.

1

The first figure shows a general set of communicators, which overlap in unstructured
ways; this is not advised.

Genera Communicators
MPI_COMM_WORLD

booooooo
@QQOQQQQ

Figure 7.1

The second figure shows a hierarchical set of communicators, where each communicator
is a subset of its parent, and two sibling communicators (i.e. children of the same parent)
do not overlap.

Hierarchical Communicators
MPI_COMM_WORLD

OOOOOQOO
OOOOOQOO

Figure 7.2

2

The third figure shows how hierarchical communicators can be used. Note that it
alternates between the use of a parent communicator and the use of its children. The
restriction against doing that is solely against using them in parallel — overlapping inactive
communicators are not a problem.

Using Hierarchies

7.3 Splitting Communicators

You always start with an existing communicator and subdivide it to make one or more
new ones. Doing this is a collective operation on the existing communicator.

In the call we shall use, each process specifies a non-negative integer; its value is com-
monly called the colour. Each new communicator corresponds to one colour; e.g. all pro-
cesses that specify the integer 42 belong to the same child communicator. If two processes
specify different colours, the call returns different communicators (i.e. the ones they belong
to); in computer science terms, a communicator is a value not an identifier.

You can also specify MPI_UNDEFINED to opt out of any child communicator. That is
an unspecified negative integer — note that zero is a valid colour, and therefore cannot be
used for the undefined value. In this case, the call will return MPI_COMM_NULL, which is an
invalid communicator, so do not use it.

Splitting Communicators

Figure 7.4

You can also set the rank in the new communicator. You provide a key argument
that has an integer value. In this case, any values are allowed, even negative ones, and
the processes have ranks in the new communicator in the same order as the key values.
Setting all keys to zero says you do not care, and I recommend doing just that, because it is
one less detail to worry about. Doing anything else with keys is advanced use, comparable
to operating on groups directly (see later); the examples will use keys of zero.

When you have finished with a communicator, you should free (i.e. delete or destroy)
it. That is a collective call on the new communicator, and will free any resources it uses.
But you must tidy up all transfers first; some libraries and tools may check that has been
done, but others may fail in horrible ways if there are any outstanding transfers. You
need not free it if you only stop using it (i.e. when you are going to reuse it later).

Fortran:

INTEGER :: colour , newcomm , error
I ’colour’ is set to an appropriate value

CALL MPI_Comm_split (MPI_COMM_WORLD , &
colour , 0 , newcomm , error)
IF (newcomm /= MPI_COMM_NULL) THEN

CALL My_collective (newcomm , ...)
CALL MPI_Comm_free (newcomm , error)
END IF

int colour , error ;
/* ’colour’ is set to an appropriate value */
MPI_Comm newcomm ;

error = MPI_Comm_split (MPI_COMM_WORLD ,
colour , 0 , & newcomm) ;

if (newcomm != MPI_COMM_NULL) {
My_collective (newcomm , ...) ;
error = MPI_Comm_free (newcomm) ;

7.4 More Complex Uses

You can obviously do the above recursively. All you need is to change MPT_COMM_WORLD
to newcomm and newcomm to evennewercomm. No example is given of doing this.

To repeat, do not use overlapping communicators; inactive communicators are not a
problem. All you need to do is to tidy up all transfers before proceeding, though it is a
good idea to use barriers for tuning reasons. This is a very simple C example of splitting
collectives:

Using Two Levels

1 L

{1 o I s
1 H LA 1 1

|
| PIIIII | | | I) N iy N o |

™ T T T
I) N)N (I [I) A o N
1 e 'r— —_— 1
1 H 1 1 1
{1 o
1 H 1y 1 1
e e s o s o
1 ' ; 1
I | N) A 2 U I I N N O N
I A (I N D N o N o D

Figure 7.5

Note that newcomm is actually three communicators in the figure; they cannot overlap,
so the above use is safe. Yes, that is parallel use of collectives.

5

errno = My_global_collective (MPI_COMM_WORLD) ;
errno = Split (MPI_COMM_WORLD , colour , O , & newcomm) ;
if (newcomm != MPI_COMM_NULL)
errno = My_split_collective (newcomm , ...) ;
errno = My_global_collective (MPI_COMM_WORLD) ;
if (newcomm != MPI_COMM_NULL)
errno = My_split_collective (newcomm , ...) ;
errno = My_global_collective (MPI_COMM_WORLD) ;

The following is the first half of the above example, with some barriers added. There
is no difference in behaviour, but this is probably easier to tune, and possibly faster. You
should note which communicator they are used with!

errno = My_global_collective (MPI_COMM_WORLD) ;
errno = Split (MPI_COMM_WORLD , colour , O , & newcomm) ;
if (newcomm != MPI_COMM_NULL) {
errno = My_split_collective (newcomm , ...) ;
errno = Barrier (newcomm) ;
}
errno = Barrier (MPI_COMM_WORLD) ;
errno = My_global_collective (MPI_COMM_WORLD) ;

The error handler is inherited. You can change that subsequently, but it is difficult to
imagine many people wanting to. If you want to set the error handler simply, you should
set it before creating any sub-communicators (obviously on MPI_COMM_WORLD). It will then
be inherited to all of the communicators you create.

You can make an exact copy of a communicator, which is then completely independent of
the first one; the function is MPI_Comm_dup. This could be useful to bypass implementation
bugs though I shall mention another possible use later, under I/O. But, in general, very
few people will want to do this. FFTW and SPOOLES do use it, but it looks as if they
may have misunderstood the MPI specification, though it could have been to fix up some
broken implementation.

Topologies are how the processes are connected. MPI has some virtual topology fa-
cilities that map the program’s structure, which are independent of the actual hardware
network. There is another lecture on Cartesian topologies, which may clarify code that
uses an N-dimensional grid (see later under “Problem Decomposition”); that use is simple
but is omitted for brevity. However, topologies are almost essential if:

e you are writing structure-generic libraries, or
e your program has a variable graph structure.

That is more-or-less all you need to know. You can add names to communicators, which
might improve your diagnostics considerably (or might not); look up MPI_Comm_get_name
and MPI_Comm _set name if you want to do that. And there is one other function, for
comparing communicators, useful for advanced use only: MPI_Comm_compare.

6

7.5 Groups

There are facilities for operating on groups, which are not often used, though I have
and CPMD does. Because of that, here is just a very brief summary in case you have a
program that uses them.

Operations on groups are entirely local; they are just operating on sets of integers,
after all. For cleanliness, MPI hides them behind a handle, which is the opaque type
MPI _Group in C, and you should use only the facilities that MPI provides. Groups take
effect only when you create a communicator. There is an alternative way of creating
subset communicators by greating a group and then creating a communicator using that
group:

MPI _Comm_group gets the current group; i.e. it extracts it from the communicator.
MPI _Group-incl creates a subset group ; you pass it the ranks you want to keep.
MPI Comm_create makes a new communicator using the new subset group.

MPI_Group_free releases the groups (i.e. the opaque type); using this is highly desir-
able to avoid resource leaks.

MPI _Comm free is used to free the communicator (as before).

You are strongly advised to program those collectively — i.e. to do identical group
calculations on all processes. This is not because MPI needs that (it does not), but to
avoid errors. There are only two actual collectives, MPI_Comm_create and MPI_Comm _free,
but group membership in all processes must match when you call the former. You may
find using groups easier than using MPI_Comm_split; they are functionally equivalent.

Other group functions include MPI_Group_compare, MPI_Group_difference,
MPI_Group-excl, MPI_Group_-intersection, MPI_Group_range_excl,
MPI_Group-range_incl, MPI_Group_rank, MPI_Group_size, MPI_Group_translate_ranks
and MPI Group_union. Many of them are alternatives to MPI_Group_incl, and you prob-
ably will never want to use the ones that are not.

7.6 Epilogue

You now know what you can do with communicators, though most of you will use only
MPI_COMM_WORLD. There is one simple exercise using MPI_Comm_split.

