
Programming with MPI

Using MPI

Nick Maclaren

nmm1@cam.ac.uk

May 2008

Programming with MPI – p. 1/??

Warning

This lecture covers a huge number of minor points
Including all of the ‘housekeeping’ facilities

Don’t try to remember all details, initially
• Try to remember which facilities are included
Refer back to this when doing the practicals

It’s a lot easier than it looks at first

Programming with MPI – p. 2/??

Using MPI

• By default, all actual errors are fatal
MPI will produce some kind of an error message
With luck, the whole program will then stop

Can ask to do your own error handling – see later

• Use one interface: Fortran or C
C++ can use C, possibly with ‘extern "C"’

Yes, you can mix them – but it’s advanced use

Programming with MPI – p. 3/??

Function Declarations

There are proformas for all functions used
Anything merely mentioned is omitted, for clarity

Interfaces/Fortran
Interfaces/C

The examples don’t give the syntax in detail
Check those files when doing the practicals

Warning: they do not match the current MPI

Use INTENT(IN) and const, as in the latest one
Will be no problem if you just use the functions

Programming with MPI – p. 4/??

MPI’s Fortran Interface (1)

• If possible, include the statement: USE mpi

• If not, use: INCLUDE ’mpif.h’
after all ‘‘USE’’s and ‘‘IMPLICIT’’

Note the first is ‘‘mpi’’ and the second ‘‘mpif.h’’
If both fail, usually a usage / installation problem

All MPI names start with MPI---
• Don’t declare names starting MPI--- or PMPI---
Names PMPI--- are used for profiling

Programming with MPI – p. 5/??

MPI’s Fortran Interface (2)

Boolean values (true/false) are LOGICAL

Process numbers, error codes etc. are INTEGER

Element counts etc. are also plain INTEGER
This isn’t a problem on any current system

Almost all MPI constants are Fortran constants
The only exception in this course is MPI---IN---PLACE

Arrays start at one, where it matters

Programming with MPI – p. 6/??

MPI’s Fortran Interface (3)

Type--generic arguments are a kludge
MPI relies on Fortran not noticing them
Will describe the issues later

MPI 3 and Fortran TS 29113 fixes them properly

For now, just pass arrays of any type
If the compiler objects, ask for help
Some guidelines on how in a later lecture

Programming with MPI – p. 7/??

MPI’s Fortran Interface (4)

Handles (e.g. communicators) are opaque types
[One you can’t break apart and look inside]

Undocumented and unpredictable INTEGER values

Use built--in equality comparison and assignment
Call MPI functions for all other operations

I.e. MPI returns INTEGER values as tokens
If their values match, they are the same token

Programming with MPI – p. 8/??

MPI’s Fortran Interface (5)

• Almost all MPI functions are SUBROUTINEs
The final argument returns an INTEGER error code

Success returns MPI---SUCCESS (always zero)

Failure codes are implementation dependent

Only a very few exceptions: mainly MPI---Wtime

All results are returned through arguments

Programming with MPI – p. 9/??

MPI’s Fortran Interface (6)

As people will know, default REAL is a disaster
DOUBLE PRECISION is tedious and out--of--date

Start all procedures, modules etc. with

USE double
USE mpi
IMPLICIT NONE

There is a suitable file Programs/double.f90
Ask for help if you don’t know how to use it

Programming with MPI – p. 10/??

MPI’s C Interface (1)

• C++ uses the C interface
So C++ people need to listen to this section

Include the statement: #include "mpi.h"
If that doesn’t work, see the next slide

All MPI names start with MPI---
• Don’t declare names starting MPI--- or PMPI---
Names PMPI--- are used for profiling

Programming with MPI – p. 11/??

C++: Using the C Interface

If simple #include "mpi.h" doesn’t work, try this:

extern "C" {

#include "mpi.h"
}

Usually, one or the other approach will work

Or put your MPI into a separate file called *.c

Write it in pure C, and use a C compiler on it
Now use extern "C" to use that from your C++

Programming with MPI – p. 12/??

MPI’s C Interface (2)

Boolean values (true/false) are int, as usual

Process numbers, error codes etc. are int

Element counts etc. are also plain int
This isn’t a problem on any current system

Type--generic arguments are void *
These are called ‘‘choice’’ arguments by MPI

Programming with MPI – p. 13/??

MPI’s C Interface (3)

Almost all MPI constants are C initialization constants
NOT usually preprocessor or integer constants

• Cannot use in case, array sizes etc.

Only maximum sizes are preprocessor constants

Arrays start at zero, where it matters

Programming with MPI – p. 14/??

MPI’s C Interface (1)

Handles (e.g. communicators) are opaque types
Names are set up by typedef and are scalars
Use built--in equality comparison and assignment
Call MPI functions for all other operations

The main such opaque types are:

MPI---Comm, MPI---Datatype, MPI---Errhandler,
MPI---Group, MPI---Op, MPI---Request,
MPI---Status

Programming with MPI – p. 15/??

MPI’s C Interface (2)

• Almost all MPI functions return an error code
This is the function result as an int
Can ignore it, if using default error handling

Success returns MPI---SUCCESS (must be zero)

Failure codes are implementation dependent

Only a very few exceptions: mainly MPI---Wtime

• All results are returned through arguments

Programming with MPI – p. 16/??

MPI and C++

MPI 2.0 introduced a C++ interface in 1997
It’s significantly better in a great many respects

However, MPI 2.2 deprecated it in 2009
Its recommendation is to use the C interface
• MPI 3.0 has deleted it

• This course will teach only the C interface
Handouts and materials cover the C++ one, too
When calling C from C++, use the C examples

Programming with MPI – p. 17/??

More on Interfaces

• That is all you need for now

We will return to language interfaces later

• Advanced language facilities to avoid

• Interfaces for advanced MPI programming

• Performance and optimisation issues

Programming with MPI – p. 18/??

Starting and Stopping

• For now, we will ignore error handling

All processes must start by calling MPI---Init

And, normally, finish by calling MPI---Finalize

• These are effectively collectives
Call both at predictable times, or risk confusion

• You can’t restart MPI after MPI---Finalize

MPI---Init must be called exactly once

Programming with MPI – p. 19/??

Fortran Startup/Stopping

Fortran argument decoding is behind the scenes

USE double
USE mpi
IMPLICIT NONE
INTEGER :: error

CALL MPI---Init (error)

CALL MPI---Finalize (error)

END

If that doesn’t work, see the MPI documentation
• Though you will probably need to ask for help

Programming with MPI – p. 20/??

C Startup/Stopping

MPI---Init takes the addresses of main’s arguments
• You must call it before decoding them
Some implementations change them in MPI---Init

#include "mpi.h"

int main (int argc , char * argv []) {

MPI---Init (& argc , & argv) ;

MPI---Finalize () ;

return 0 ;

}

Programming with MPI – p. 21/??

Aside: Examples

I will omit the following statements, for brevity:

USE double
USE mpi
IMPLICIT NONE

#include "mpi.h"

Include them in any ‘‘module’’ where you use MPI

Don’t rely on implicit declaration

Programming with MPI – p. 22/??

Version Numbers

MPI 1.2 and up provide version number information

• Not needed for simple use, as in this course
All versions of MPI are essentially compatible

Constants MPI---VERSION, MPI---SUBVERSION

Set to 1, 3 for MPI 1.3 or 2, 2 for current MPI 2

There is also a function MPI---Get---version

Which can be called even before MPI---Init

Programming with MPI – p. 23/??

Testing MPI’s State (1)

You can test the state of MPI on a process
• This is needed only when writing library code

Fortran example:

LOGICAL :: started , stopped
INTEGER :: error

CALL MPI---Initialized (started , error)

CALL MPI---Finalized (stopped , error)

Programming with MPI – p. 24/??

Testing MPI’s State (2)

C example:

int started , stopped , error ;

error = MPI---Initialized (& started) ;

error = MPI---Finalized (& stopped) ;

Programming with MPI – p. 25/??

Global Communicator

The global communicator is predefined:

MPI---COMM---WORLD

It includes all usable processes
e.g. the <n> set up by ‘‘mpiexec –n <n>’’

Many applications use only this communicator
• Almost all of this course does, too

There is one lecture on communicators

Programming with MPI – p. 26/??

Process Rank

The rank is the process’s index
always within the context of a communicator

A rank is an integer from 0 to <n>--1
Yes, this applies to Fortran, too

There is one predefined rank constant:
MPI---PROC---NULL – no such process

Don’t assume this is negative – or that it isn’t

We shall describe the use of it when relevant

Programming with MPI – p. 27/??

Information Calls (1)

MPI---Comm---size returns the number of processes

MPI---Comm---rank returns the local process number

Fortran example:

INTEGER :: nprocs , myrank , error
CALL MPI---Comm---size (&

MPI---COMM---WORLD , nprocs , error)

CALL MPI---Comm---rank (&

MPI---COMM---WORLD , myrank , error)

Remember & means continuation in Fortran

Programming with MPI – p. 28/??

Information Calls (2)

C example:

int nprocs , myrank , error ;

error = MPI---Comm---size (MPI---COMM---WORLD ,
& nprocs) ;

error = MPI---Comm---rank (MPI---COMM---WORLD ,
& myrank) ;

Programming with MPI – p. 29/??

Information Calls (3)

You can query the local processor name
A string of length MPI---MAX---PROCESSOR---NAME

Fortran example:

CHARACTER (LEN = &
MPI---MAX---PROCESSOR---NAME) :: procname

INTEGER :: namelen , error

CALL MPI---Get---processor---name (procname , &

namelen , error)

Programming with MPI – p. 30/??

Information Calls (4)

C example:

char procname [MPI---MAX---PROCESSOR---NAME + 1] ;

int namelen , error ;

error = MPI---Get---processor---name (procname ,
& namelen) ;

procname [namelen] = ’\0’;

Programming with MPI – p. 31/??

Information Calls (5)

MPI---Wtime gives elapsed time (‘‘wall--clock time’’)
Seconds since an unspecified starting point

The starting point is fixed for a process
Doesn’t change while the process is running

I have seen start of process, system boot time,
Unix epoch and 00:00 Jan. 1st 1900

MPI---Wtick similar but gives timer resolution

Few people bother – but it’s there if you want it

Programming with MPI – p. 32/??

Information Calls (6)

Fortran:

REAL(KIND=KIND(0.0D0)) :: now
now = MPI---Wtime ()

C:

double now ;

now = MPI---Wtime () ;

Programming with MPI – p. 33/??

Information Calls (7)

Anywhere from MPI---Init to MPI---Finalize

They are all purely local operations
Use them as often as you need them

MPI---Comm---size same result on all processes
• Others may give different ones on each process

• That includes MPI---Wtime’s starting point

As well as the value returned from MPI---Wtick

Programming with MPI – p. 34/??

Barrier Synchronisation (1)

MPI---Barrier synchronises all processes

They all wait until they have all entered the call
Then they all start up again, independently

• The only collective that synchronises
We will come back to this later

Programming with MPI – p. 35/??

Barrier Synchronisation (2)

Fortran example:

INTEGER :: error

CALL MPI---Barrier (MPI---COMM---WORLD , error)

C example:

int error ;

error = MPI---Barrier (MPI---COMM---WORLD) ;

Programming with MPI – p. 36/??

Abandoning All Hope (1)

MPI---Abort is the emergency stop
• Always call it on MPI---COMM---WORLD

Not a collective but should stop all processes
and, on most systems, it usually does ...

• Outstanding file output is often lost
Far better to stop normally, if at all possible
I.e. all processes call MPI---Finalize and exit

• MPI---Abort is the emergency stop

Programming with MPI – p. 37/??

Abandoning All Hope (2)

Fortran:

INTEGER :: error

CALL MPI---Abort (MPI---COMM---WORLD , &

<failure code> , error)

C:

int error ;

error = MPI---Abort (MPI---COMM---WORLD ,
<failure code>) ;

Programming with MPI – p. 38/??

Lookahead to I/O

I /O in parallel programs is always tricky
It’s worse in MPI, because of MPI’s portability
Each type of parallelism has different oddities

• For now, just write to stdout or stderr
And the default output in Fortran, of course
It will work well enough for the examples
Lines may be interleaved with each other

• We will come back to using I /O later

Programming with MPI – p. 39/??

First Practical

You can actually do quite a lot with just these

Start by writing a trivial test program

Then writing a command spawner
This is very useful, and there are several around
• Yes, some practical uses ARE that simple!
You may not know enough C/Fortran – if so, skip it

Use any language you like, that can call MPI

Examples will be in Fortran and C

Programming with MPI – p. 40/??

Compiling and Running

This is all very implementation--dependent, of course
But, on most systems, do something like this:

Compile and link using mpif90, mpicc, mpiCC
Run using ‘‘mpiexec –n <n> <program> [args ...]’’
<n> is the number of processes to use

When using a job scheduler (queuing system)
you may need to put the latter in a script

• This course will use MPI only in SPMD mode

Programming with MPI – p. 41/??

PWF/MCS/DS Linux Usage

The PWF/MCS/DS uses mainly dual core systems
All the examples will work, but with odd timings

This course teaches core--independent MPI use
This is just another aspect of portability

It uses gfortran, gcc and OpenMPI

I recommend using –Wall –Wextra –g --O3
If so, ignore a few warnings – but only those

Programming with MPI – p. 42/??

Ignorable Warnings

Fortran:
Warning: Procedure ’...’ called with an implicit interface at (1)

For most of the MPI calls – but only those

C/C++:
/usr/local/OPENMPI/include/mpi.h:220: warning:

ISO C90 does not support ’long long’

C++:
/usr/local/OPENMPI/include/openmpi/ompi/mpi/cxx/comm---inln.h:...

warning: unused parameter ’...’
Regrettably, there are quite a lot of these

Programming with MPI – p. 43/??

Instructions

If running Microsoft Windows, CTRL--ALT--DEL
Select Restart and then Linux
Log into Linux and start a shell and an editor
Create programs called prog.f90, prog.c, prog.cpp.

• Run by typing commands like
mpif90 prog.f90, mpicc prog.c, mpiCC prog.cpp
mpiexec --n 4 a.out

• Analyse what went wrong
• Fix bugs and retry

Programming with MPI – p. 44/??

	Warning
	Using MPI
	Function Declarations
	MPI's Fortran Interface (1)
	MPI's Fortran Interface (2)
	MPI's Fortran Interface (3)
	MPI's Fortran Interface (4)
	MPI's Fortran Interface (5)
	MPI's Fortran Interface (6)
	MPI's C Interface (1)
	C++: Using the C Interface
	MPI's C Interface (2)
	MPI's C Interface (3)
	MPI's C Interface (1)
	MPI's C Interface (2)
	MPI and C++
	More on Interfaces
	Starting and Stopping
	Fortran Startup/Stopping
	C Startup/Stopping
	Aside: Examples
	Version Numbers
	Testing MPI's State (1)
	Testing MPI's State (2)
	Global Communicator
	Process Rank
	Information Calls (1)
	Information Calls (2)
	Information Calls (3)
	Information Calls (4)
	Information Calls (5)
	Information Calls (6)
	Information Calls (7)
	Barrier Synchronisation (1)
	Barrier Synchronisation (2)
	Abandoning All Hope (1)
	Abandoning All Hope (2)
	Lookahead to I/O
	First Practical
	Compiling and Running
	PWF/MCS/DS Linux Usage
	Ignorable Warnings
	Instructions

