
Programming with MPI

Datatypes and Collectives

Nick Maclaren

Computing Service

nmm1@cam.ac.uk, ext. 34761

May 2008

Programming with MPI – p. 1/??

Transfer Procedures

These need to specify one or more transfer buffers
Used to send or receive data, or both

These are specified using three arguments:

The address of the buffer
The size of the buffer
The base datatype of the buffer

They also need to specify some control information
The root process for 1:all transfers
The communicator to be used for the collective

Programming with MPI – p. 2/??

Transfer Buffers (1)

MPI transfers use vectors (i.e. 1--D arrays)
The base element datatypes are always scalars

They all include an element count argument
i.e. the length of the vector in elements

• The arguments are type--generic (choice)
Declared as ‘‘void *’’ in C/C++

Fortran relies on no checking (see later)

• The datatype is passed as a separate argument

Programming with MPI – p. 3/??

Transfer Buffers (2)

The vectors are always contiguous arrays
Each element immediately follows its predecessor

Like Fortran 77 or C/C++ arrays, not all of Fortran 90
Return to Fortran 90 assumed shape arrays later

For example, consider transferring 100 integers
The element count is 100

These are declared like:

Fortran: INTEGER BUFFER (100)
C/C++: int buffer [100] ;

Programming with MPI – p. 4/??

C++ Classes

But what about C++ library containers?
In general, they are not contiguous arrays

• But <vector>, <array> and <basic---string> are

⇒ Though not <vector<bool> >!
In all cases, & front () is the address of the data

Conversion to void * in the call is automatic

• This applies far more generally than just to MPI

Also, similar remarks apply to libraries like Boost

Programming with MPI – p. 5/??

Datatypes (1)

Datatypes are MPI constants, not language types
There is a fairly complete set that are built--in
• Note that does NOT mean language constants

Each datatype has an associated size
• Count and offsets are in units of that
Exactly as in Fortran or C/C++ arrays

double buffer [100] ;

MPI---Bcast (buffer , 100 , MPI---DOUBLE ,
root , MPI---COMM---WORLD)

Programming with MPI – p. 6/??

Datatypes (2)

The MPI and language datatypes must match
Some exceptions, but I suggest avoiding them

• You will not get warned if you make an error

As in K&R C, C casts and Fortran 77
There is no C++ or Fortran 90 type--checking

In theory, a compiler could detect a mismatch
But it would have to be ‘‘MPI aware’’ and none are

Programming with MPI – p. 7/??

Datatypes (3)

Here is a sample of recommended datatypes
All that you need for the first examples
We will come back to these in more detail later

Fortran:

MPI---INTEGER

MPI---DOUBLE---PRECISION

C: C++:

MPI---INT MPI::INT

MPI---DOUBLE MPI::DOUBLE

MPI---INT

MPI---DOUBLE
Programming with MPI – p. 8/??

Collectives (1)

We have already used MPI---Barrier

All of the others involve some data transfer

• All processes in a communicator are involved
For use on a subset, create another communicator
We shall come back to that later

• All datatypes and counts must be the same
A few, obscure exceptions – not recommended

Obviously the communicator must be, too

Programming with MPI – p. 9/??

Collectives (2)

• All of the buffer addresses may be different
MPI processes don’t share any addressing

This generalises in more advanced use
The data layout may be different – see later

• Match the communicator, datatypes and counts
And call all of the collectives ‘‘at the same time’’

• Easiest to achieve using the SPMD model
You can code just one collective call

Programming with MPI – p. 10/??

Collectives (3)

Some collectives are asymmetric (1:all)
E.g. broadcast from one proc. to all communicator
That means all processes – including itself

Those all have a root process argument
This also must be the same on all processes
Any process can be specified – not just zero

Symmetric ones don’t have that argument
For example, MPI---Barrier doesn’t

Programming with MPI – p. 11/??

Collectives (4)

• Most use separate send and receive buffers
Both for flexibility and for standards conformance

• Usually specify the datatype and count for each
Needed for advanced features not covered here

MPI uses only the arguments it needs
I.e. unused ones are completely ignored

• Set them all compatibly – it is much safer!
Keep all datatypes and counts the same

Programming with MPI – p. 12/??

Broadcast

B0

B0

B0

Count
elements

Process 0

Process 2

Count
elements

B0 Process 1

Programming with MPI – p. 13/??

Broadcast (1)

Broadcast copies the same data from the root
to all processes in the communicator

Fortran example:

REAL(KIND=KIND(0.0D0)) :: buffer (100)
INTEGER , PARAMETER :: root = 3
INTEGER :: error
CALL MPI---Bcast (buffer , 100 , &

MPI---DOUBLE---PRECISION , root , &

MPI---COMM---WORLD , error)

Programming with MPI – p. 14/??

Broadcast (2)

C example:

double buffer [100] ;

int root = 3 , error ;

error = MPI---Bcast (buffer , 100 , MPI---DOUBLE ,
root , MPI---COMM---WORLD) ;

C++ example:

double buffer [100] ;

int root = 3 ;

MPI::COMM---WORLD . Bcast (buffer , 100 ,
MPI::DOUBLE , root) ;

C++ using C interface example:

vector<double> buffer (100) ;

int root = 3 ;

Programming with MPI – p. 15/??

Multiple Transfer Buffers

Many collectives need one buffer per process

For example, take a 1⇒N scatter operation
The root sends different data to each process

Each pairwise transfer buffer is concatenated
in the order of process numbers (i.e. 0...N--1)

Size of source = N * size of each result

Programming with MPI – p. 16/??

Multiple Transfer Buffers

Argument is

address of first

A count (vector length) of 3

element (as usual)

Elements (i.e. one

unit of the datatype)

This is for 4 processes

Process 0 Process 1 Process 2 Process 3

Programming with MPI – p. 17/??

Size Specifications (1)

Size specifications are slightly counter--intuitive
That is done for consistency and simplicity

You specify the size of each pairwise transfer
MPI will deduce the total size of the buffers
I.e. it will multiply by process count, if needed

• The process count is implicit
It is taken from the communicator
I.e. the result from MPI---Comm---size

Programming with MPI – p. 18/??

Size Specifications (2)

‘‘void *’’ defines no length in C/C++

Nor does ‘‘<type> :: buffer(*)’’ in Fortran

• It is up to you to get it right
No compiler can trap an error with that

We shall use scatter as our first example
This is one process sending different data

to every process in the communicator

Programming with MPI – p. 19/??

Scatter

A1 A2A0 A0

A1

A2

Count
elements

Count
elements

Process 0

Process 2

Process 1

Programming with MPI – p. 20/??

Scatter (1)

Scatter copies different data from the root
to all processes in the communicator

The send buffer is used only on the root
The receive buffer is used on all processes

Following examples assume ≤30 processes
Specified only in the send buffer size

• Note the differences in the buffer declarations

Programming with MPI – p. 21/??

Scatter (2)

Fortran example:

REAL(KIND=KIND(0.0D0)) :: &
sendbuf (100 , 30) , recvbuf (100)

INTEGER , PARAMETER :: root = 3
INTEGER :: error
CALL MPI---Scatter (&

sendbuf , 100 , MPI---DOUBLE---PRECISION , &

recvbuf , 100 , MPI---DOUBLE---PRECISION , &

root , MPI---COMM---WORLD , error)

Programming with MPI – p. 22/??

Scatter (3)

C example:

double sendbuf [30] [100] , recvbuf [100] ;

int root = 3 , error ;

error = MPI---Scatter (

sendbuf , 100 , MPI---DOUBLE ,
recvbuf , 100 , MPI---DOUBLE ,
root , MPI---COMM---WORLD)

Programming with MPI – p. 23/??

Scatter (4)

C++ example:

double sendbuf [30] [100] , recvbuf [100] ;

int root = 3 ;

MPI::COMM---WORLD . Scatter (

sendbuf , 100 , MPI::DOUBLE ,
recvbuf , 100 , MPI::DOUBLE ,
root)

Programming with MPI – p. 24/??

Scatter (4)

C++ using C interface example:

vector < double > sendbuf (30 * 100) , recvbuf (100) ;

int root = 3 ;

error = MPI---Scatter (

& sendbuf . front () , 100 , MPI---DOUBLE ,
& recvbuf . front () , 100 , MPI---DOUBLE ,
root , MPI---COMM---WORLD)

Remember that only the contents are contiguous
Do NOT create multiple buffers like this:

array< array< double , 100 > , 30 > sendbuf ;

Programming with MPI – p. 25/??

Scatter

A1 A2A0 A0

A1

A2

Count
elements

Count
elements

Process 0

Process 2

Process 1

Programming with MPI – p. 26/??

Hiatus

That is the basic principles of collectives

Now might be a good time to do some examples
The first few questions cover the material so far

After that, we cover datatypes more thoroughly
And describe more of the collectives

Programming with MPI – p. 27/??

Fortran Datatypes (1)

Recommended datatypes:

MPI---CHARACTER (≡ CHARACTER(LEN=1))

MPI---LOGICAL

MPI---INTEGER

MPI---REAL

MPI---DOUBLE---PRECISION

MPI---COMPLEX

MPI---DOUBLE---COMPLEX

I.e. COMPLEX(KIND=KIND(0.0D0))

Programming with MPI – p. 28/??

Fortran Datatypes (2)

Fortran 90 parameterized types are also supported
REAL(KIND=SELECTED---REAL---KIND(15,300))

There is more on those in the extra lectures

For use from Fortran, that’s all I recommend
There are some more built--in datatypes, though

MPI---PACKED, for MPI derived datatypes

MPI---BYTE (uninterpreted 8--bit bytes)

What you can do with these is a bit restricted

Programming with MPI – p. 29/??

Other Fortran Datatypes

And you should definitely avoid these

MPI---INTEGER1 MPI---REAL2

MPI---INTEGER2 MPI---REAL4

MPI---INTEGER4 MPI---REAL8

MPI---<type>N translates to <type>*N

That notation is non--standard and outmoded
• It doesn’t mean the size in bytes!

E.g. REAL*2 works only on Cray vector systems

Programming with MPI – p. 30/??

C/C++ Datatypes (1)

MPI---CHAR is for char, meaning characters

Don’t use it for small integers and arithmetic

Recommended integer datatypes:

MPI---UNSIGNED---CHAR

MPI---SIGNED---CHAR

MPI---SHORT

MPI---UNSIGNED---SHORT

MPI---INT

MPI---UNSIGNED (not MPI---UNSIGNED---INT)

MPI---LONG

MPI---UNSIGNED---LONG
Programming with MPI – p. 31/??

C/C++ Datatypes (2)

Recommended floating--point datatypes:

MPI---FLOAT

MPI---DOUBLE

MPI---LONG---DOUBLE

For use from C/C++, I recommend one more

MPI---BYTE (uninterpreted 8--bit bytes)

What you can do with these is a bit restricted

• Remember MPI--- in C is MPI:: in C++

Though the C names may well be accepted in both

Programming with MPI – p. 32/??

C++ Datatypes

Recommended datatypes (in C++ but not C) :

MPI::BOOL
MPI::COMPLEX
MPI::DOUBLE---COMPLEX

MPI::LONG---DOUBLE---COMPLEX

They all correspond to the obvious C++ type

Programming with MPI – p. 33/??

C++ Datatypes

When C++ calls the C interface :

Warning: they all depend on MPI 3.0
Most implementations won’t have them yet

MPI---CXX---BOOL

MPI---CXX---FLOAT---COMPLEX

MPI---CXX---DOUBLE---COMPLEX

MPI---CXX---LONG---DOUBLE---COMPLEX

They all correspond to the obvious C++ type

Programming with MPI – p. 34/??

C99 and Complex

There are types for C99 ---Complex, if you use it

But I don’t advise using that (or most of C99)

C99 ---Complex may not be compatible with C++

And WG14 have now made ---Complex optional

MPI---C---FLOAT---COMPLEX

MPI---C---COMPLEX is a synonym

MPI---C---DOUBLE---COMPLEX

MPI---C---LONG---DOUBLE---COMPLEX

Programming with MPI – p. 35/??

Other C/C++ Datatypes

I don’t recommend the other built--in datatypes

MPI---LONG---LONG---INT (note the name)

Needs C99 and optional, anyway
MPI---UNSIGNED---LONG---LONG

It need C99 and is optional, anyway
MPI---WCHAR (whatever C/C++ wchar---t is)

No useful specification in C90, C99 or C++
MPI---PACKED, for MPI derived datatypes

There is no support for C99’s new integer types
• Ask me offline why that is a Good Thing

Programming with MPI – p. 36/??

Gather

Gather is precisely the converse of scatter

• Just change MPI---Scatter to MPI---Gather

And Scatter to Gather for C++, of course

Of course, the array sizes need changing
• It is the receive buffer that needs to be bigger

The send buffer is used on all processes
The receive buffer is used only on the root

Programming with MPI – p. 37/??

Gather

C0

B0

A0

Count
elements

Count
elements

Process 0

Process 2

Process 1

A0 B0 C0

Programming with MPI – p. 38/??

Allgather (1)

You can gather data and then broadcast it
The interface is very similar, with one difference

• This is now a symmetric operation
So has no argument specifying the root process

• Change MPI---Gather to MPI---Allgather

And Gather to Allgather for C++
And remove the root process argument, of course

• The receive buffer is now used on all processes

Programming with MPI – p. 39/??

Allgather

C0

B0

A0 A0

A0

A0 B0

B0

B0 C0

C0

C0

Count
elements

Count
elements

Process 0

Process 2

Process 1

Programming with MPI – p. 40/??

Allgather (2)

Fortran example:

REAL(KIND=KIND(0.0D0)) :: &
sendbuf (100) , recvbuf (100 , 30)

INTEGER :: error
CALL MPI---Allgather (&

sendbuf , 100 , MPI---DOUBLE---PRECISION , &

recvbuf , 100 , MPI---DOUBLE---PRECISION , &

MPI---COMM---WORLD , error)

Programming with MPI – p. 41/??

Allgather (3)

C example:

double sendbuf [100] , recvbuf [30] [100] ;

int error ;

error = MPI---Allgather (

sendbuf , 100 , MPI---DOUBLE ,
recvbuf , 100 , MPI---DOUBLE ,
MPI---COMM---WORLD)

C++ example:

double sendbuf [100] , recvbuf [30] [100] ;

MPI::COMM---WORLD . Allgather (

sendbuf , 100 , MPI::DOUBLE ,
recvbuf , 100 , MPI::DOUBLE)

Programming with MPI – p. 42/??

Alltoall

You can do a composite gather/scatter operation
Essentially the same interface as MPI---Allgather

• Just change MPI---Allgather to MPI---Alltoall

And Allgather to Alltoall for C++

• Now, both buffers need to be bigger

Think of this as a sort of parallel transpose
Used when implementing matrix transpose
• It’s very powerful – a key for performance

Programming with MPI – p. 43/??

Alltoall

C0 C1 C2

B1 B2

A1 A2

B0

A0 A0

A1

A2 B2

B1

B0 C0

C1

C2

Process 0

Process 2

Count
elements

Count
elements

Programming with MPI – p. 44/??

Global Reductions (1)

One of the basic parallelisation primitives

Start with a normal gather operation
Then sum the values over all processes
Often can be implemented much more efficiently

• Summation is not the only reduction
Anything that makes mathematical sense
All of the standard ones are provided

Programming with MPI – p. 45/??

Reduce

C0

B0

A0

Count
elements

Process 0

Process 2

Process 1

C0+B0+A0

elements
Count

Programming with MPI – p. 46/??

Global Reductions (2)

• It specifies the datatype and count once
Not separately for the source and result
It makes no sense to do that, so MPI doesn’t

• Does not reduce over the vector
The count is the size of the result, too
It sums the values for each index separately

You have to reduce over the vector yourself
• Doing it beforehand is more efficient

Programming with MPI – p. 47/??

Process 1

A0 B0 C0

C1A1 B1

Process 2 C2A2 B2

Result B0+B1+B2A0+A1+A2 C0+C1+C2

Process 0

Reduce Result

Programming with MPI – p. 48/??

Reduce (2)

Fortran example:

REAL(KIND=KIND(0.0D0)) :: &
sendbuf (100) , recvbuf (100)

INTEGER , PARAMETER :: root = 3
INTEGER :: error
CALL MPI---Reduce (sendbuf , recvbuf , &

100 , MPI---DOUBLE---PRECISION , &

MPI---SUM , root , MPI---COMM---WORLD , error)

Programming with MPI – p. 49/??

Reduce (3)

C example:

double sendbuf [100] , recvbuf [100] ;

int root = 3 , error ;

error = MPI---Reduce (sendbuf , recvbuf ,
100 , MPI---DOUBLE , MPI---SUM , root ,
MPI---COMM---WORLD)

C++ example:

double sendbuf [100] , recvbuf [100] ;

int root = 3 ;

MPI::COMM---WORLD . Reduce (

sendbuf , recvbuf , 100 , MPI::DOUBLE ,
MPI::SUM , root)

Programming with MPI – p. 50/??

Allreduce

You can reduce data and then broadcast it
Again, the interface is essentially identical

• This is now a symmetric operation
So has no argument specifying the root process

• Just change MPI---Reduce to MPI---Allreduce

And Reduce to Allreduce for C++
And remove the root process argument, of course

• The receive buffer is now used on all processes

Programming with MPI – p. 51/??

Allreduce

C0

B0

A0

Count
elements

Process 0

Process 2

Process 1

elements
Count

C0+B0+A0

C0+B0+A0

C0+B0+A0

Programming with MPI – p. 52/??

Reduction Operations (1)

Remember the C++ name changes
Same rules for all precisions of number

MPI---MIN integer or real minimum

MPI---MAX integer or real maximum

MPI---SUM integer, real or complex sum

MPI---PROD integer, real or complex product

Note there are no reductions on character data

Programming with MPI – p. 53/??

Reduction Operations (2)

Boolean is int in C/C++ and LOGICAL in Fortran
The supported values are only True and False

You can also perform bitwise operations on integers

MPI---LAND Boolean AND

MPI---LOR Boolean OR

MPI---LXOR Boolean Exclusive OR

MPI---BAND integer bitwise AND

MPI---BOR integer bitwise OR

MPI---BXOR integer bitwise Exclusive OR

Programming with MPI – p. 54/??

More on Collectives

There is a little more to say on collectives
But that’s quite enough for now

The above has covered all of the essentials
The remaining aspects to cover are:

• A few more advanced collectives
Searching as a reduction
More flexible buffer layout

• Using collectives efficiently

Programming with MPI – p. 55/??

Practicals

There are a lot of exercises on the above
Will take you through almost all aspects

• Each one should need very little editing/ typing
You can start from a previous one as a basis

PLEASE check you understand the point
And that you get the same answers as are provided
And that you understand what it is doing and why

• They are pointless if you do them mechanically

Programming with MPI – p. 56/??

	Transfer Procedures
	Transfer Buffers (1)
	Transfer Buffers (2)
	C++ Classes
	Datatypes (1)
	Datatypes (2)
	Datatypes (3)
	Collectives (1)
	Collectives (2)
	Collectives (3)
	Collectives (4)
	Broadcast (1)
	Broadcast (2)
	Multiple Transfer Buffers
	Size Specifications (1)
	Size Specifications (2)
	Scatter (1)
	Scatter (2)
	Scatter (3)
	Scatter (4)
	Scatter (4)
	Hiatus
	Fortran Datatypes (1)
	Fortran Datatypes (2)
	Other Fortran Datatypes
	C/C++ Datatypes (1)
	C/C++ Datatypes (2)
	C++ Datatypes
	C++ Datatypes
	C99 and Complex
	Other C/C++ Datatypes
	Gather
	Allgather (1)
	Allgather (2)
	Allgather (3)
	Alltoall
	Global Reductions (1)
	Global Reductions (2)
	Reduce (2)
	Reduce (3)
	Allreduce
	Reduction Operations (1)
	Reduction Operations (2)
	More on Collectives
	Practicals

