
Programming with MPI

Point-to-Point Transfers

Nick Maclaren

nmm1@cam.ac.uk

May 2008

Programming with MPI – p. 1/??



Digression

Most books and courses teach point--to--point first
And then follow up by teaching collectives

This course hasn’t – why not?

• Point--to--point is hard to use correctly
I usually make a complete mess of it, first time
See Hoare’s Communicating Sequential Processes
Hoare designed BSP based on his experience!

After all, who programs in assembler nowadays?
Point--to--point is the assembler--level interface

Programming with MPI – p. 2/??



Using Point-to-Point

• Above all, KISS – Keep It Simple and Stupid

• Design proper primitives, don’t just code

Simplest to use one of two design models for that:
• Your own collective – see later
• Two processes, doing nothing else

• It’s easiest if your primitives don’t overlap
Can separate by barriers and debug separately
Almost essential for tuning – see later

Programming with MPI – p. 3/??



Envelopes

Think of point--to--point as a sort of Email
Like that, messages come in envelopes

MPI’s envelopes contain the following:
• The source process
• The destination process
• The communicator
• An identifying tag

One of the first two is the calling process
The others are specified in the arguments

Programming with MPI – p. 4/??



Receive Status (1)

A receive action returns a status
This contains the following:

• The source process
• The identifying tag
• Other, hidden, information

Already know the communicator and destination
A function to extract the message size

Programming with MPI – p. 5/??



Receive Status (2)

In C, the status is a typedef structure MPI---Status

In Fortran, it is an integer array
INTEGER, DIMENSION(MPI---STATUS---SIZE)

• You declare these yourself, as normal
Including in static memory or on the stack

• They are not like communicators
You don’t call MPI to allocate and free them

Programming with MPI – p. 6/??



Receive Status (3)

For now, you can largely ignore the status
You don’t need to look at it for very simple use

• In MPI 1, had to provide the argument
This is the form that I shall use in examples

• MPI 2 allowed you to not provide it
I don’t recommend doing that, in general

Programming with MPI – p. 7/??



The Simplest Use

Assume communicator is MPI---COMM---WORLD

The tag is needed only for advanced use
Quite useful for added checking, though

So it’s only the destination and source
The latter is set automatically for send!
And the former is for receive!

The functions are MPI---Send and MPI---Recv

Programming with MPI – p. 8/??



Fortran Example (1)

REAL(KIND=KIND(0.0D0)) :: buffer ( 100 )
INTEGER :: myrank , error
INTEGER , PARAMETER :: from = 2 , to = 3 , &

tag = 123

CALL MPI---Rank ( myrank , error )

IF ( myrank == from ) THEN
CALL MPI---Send ( buffer , 100 , &

MPI---DOUBLE---PRECISION , to , tag , &

MPI---COMM---WORLD , error )

END IF

Programming with MPI – p. 9/??



Fortran Example (2)

REAL(KIND=KIND(0.0D0)) :: buffer ( 100 )
INTEGER :: myrank , error , status ( MPI---STATUS---SIZE )

INTEGER , PARAMETER :: from = 2 , to = 3 , &
tag = 123

CALL MPI---Rank ( myrank , error )

IF ( myrank == to ) THEN
CALL MPI---Recv ( buffer , 100 , &

MPI---DOUBLE---PRECISION , from , tag , &

MPI---COMM---WORLD , status , error )

END IF

Programming with MPI – p. 10/??



C Example (1)

double buffer [ 100 ] ;

int myrank , from = 2 , to = 3 , tag = 123 , error ;

error = MPI---Rank ( & myrank ) ;

if ( myrank == from )
error = MPI---Send ( buffer , 100 , MPI---DOUBLE ,

to , tag , MPI---COMM---WORLD ) ;

Programming with MPI – p. 11/??



C Example (2)

double buffer [ 100 ] ;

MPI---Status status ;

int myrank , from = 2 , to = 3 , tag = 123 , error ;

error = MPI---Rank ( & myrank ) ;

if ( myrank == to )
error = MPI---Recv ( buffer , 100 , MPI---DOUBLE ,

from , tag , MPI---COMM---WORLD , & status ) ;

Programming with MPI – p. 12/??



Beyond That

Trivial as that is, it’s enough to cause trouble
There are some examples on how that can happen

And it’s not enough for all real programs
MPI provides lots of knobs, bells and whistles

• You should use only what you need
Don’t use something because it looks cool

• You need to know what can be done
When you need something extra, look it up

Programming with MPI – p. 13/??



Blocking (1)

Receive will block until a matching send
If one is never posted, it will hang indefinitely

Send may block until a matching receive
Or it may copy the message and return

and MPI will transfer it in due course

Unspecified and up to the implementation
May vary between messages, or phase of the moon
• Correct MPI programs will work either way

• You can control that yourself – see later

Programming with MPI – p. 14/??



Blocking (2)

Processes A and B want to swap data

Both send the existing value, and then receive?
It will sometimes work and sometimes hang

Process A Process B

send to B send to A

Both may wait until transfers received

receive from B receive from A

Programming with MPI – p. 15/??



Blocking (3)

In that case, it’s trivial to avoid

• If A < B, A sends first and receives second
And B receives first and sends second

And conversely if A > B

Complicated transfer graphs are easy to get wrong
MPI provides several ways to avoid the problem
Use whichever is simplest for your purposes

Programming with MPI – p. 16/??



Transfer Modes (1)

MPI---Ssend is synchronous (will block)

returns when the message has been received

MPI---Bsend is buffered (won’t block)

so the swap example above will never hang

• Exactly the same usage as for MPI---Send

MPI---Send simply calls one or the other

Generally, don’t use either of them
Both have important, but advanced, uses

Programming with MPI – p. 17/??



Transfer Modes (2)

A synchronous send avoids a separate handshake
Completing the call acknowledges receipt

• Use it if it avoids an explicit acknowledgement

Buffering is more tricky, surprisingly enough
Sends are erroneous if the buffer becomes full

• And the default buffer size is zero!
But exceeding it is undefined behaviour!
Using buffering is covered later

Programming with MPI – p. 18/??



Composite Send and Receive (1)

• There is a composite send and receive
Will do the in the right order to avoid deadlock
Can also match ordinary send and receive

• It also has a form that updates in place
Sends buffer and then receives into it
That may involve extra copying, of course

Use these if they are what you want to do
They aren’t likely to be any more efficient

Programming with MPI – p. 19/??



Composite Send and Receive (2)

Fortran example:

REAL(KIND=KIND(0.0D0)) :: &
putbuf ( 100 ) , getbuf ( 100 )

INTEGER :: error , status ( MPI---STATUS---SIZE )

INTEGER , PARAMETER :: from = 2 , to = 3 , &
fromtag = 123 , totag = 456

CALL MPI---Sendrecv ( putbuf , 100 , &

MPI---DOUBLE---PRECISION , to , totag , &

getbuf , 100 , MPI---DOUBLE---PRECISION , &

from , fromtag , &
MPI---COMM---WORLD , status , error )

Programming with MPI – p. 20/??



Composite Send and Receive (3)

Fortran in place example:

REAL(KIND=KIND(0.0D0)) :: buffer ( 100 )
INTEGER :: error , status ( MPI---STATUS---SIZE )

INTEGER , PARAMETER :: from = 2 , to = 3 , &
fromtag = 123 , totag = 456

CALL MPI---Sendrecv---replace ( &

buffer , 100 , MPI---DOUBLE---PRECISION , &

to , totag , from , fromtag , &
MPI---COMM---WORLD , status , error )

Programming with MPI – p. 21/??



C Example

double putbuf [ 100 ] , getbuf [ 100 ] , buffer [ 100 ] ;

MPI---Status status ;

int from = 2 , to = 3 , fromtag = 123 , totag = 456 ,
error ;

error = MPI---Sendrecv (

putbuf , 100 , MPI---DOUBLE , to , totag ,
getbuf , 100 , MPI---DOUBLE , from , fromtag ,
MPI---COMM---WORLD , & status ) ;

error = MPI---Sendrecv---replace (

buffer , 100 , MPI---DOUBLE , to , totag ,
from , fromtag , MPI---COMM---WORLD , & status ) ;

Programming with MPI – p. 22/??



Unknown Message Size (1)

The send and receive sizes need not match
• It is an error if the receive is smaller

Only the send count values are updated
E.g. sending 30 items and receiving 100 items

will leave the last 70 items unchanged

• But there is a better way to do this
Allows receiving truly unknown size messages
This is where you start to use the status

Programming with MPI – p. 23/??



Unknown Message Size (2)

• Can accept the message with MPI---Probe

Calling it probe is a bit of a misnomer
It accepts the message and updates the status
But it doesn’t transfer the data anywhere

• You discover the size with MPI---Get---count

Then you can allocate a suitable buffer
MPI---Get---count needs the datatype

Allows for conversion, not covered here

• Lastly, you receive the message as normal

Programming with MPI – p. 24/??



Fortran Example

REAL(KIND=KIND(0.0D0)) , &
ALLOCATABLE :: buffer ( : )

INTEGER :: error , count , &
status ( MPI---STATUS---SIZE )

INTEGER , PARAMETER :: from = 2 , tag = 123

CALL MPI---Probe ( from , tag , &

MPI---COMM---WORLD , status , error )

CALL MPI---Get---count ( status , &

MPI---DOUBLE---PRECISION , count , error )

ALLOCATE ( buffer ( count ) )
CALL MPI---Recv ( buffer , count , &

MPI---DOUBLE---PRECISION , . . .

Programming with MPI – p. 25/??



C Example

double * buffer ;

int from = 2 , tag = 123 , error , count ;

MPI---Status status ;

error = MPI---Probe ( from , tag ,
MPI---COMM---WORLD , & status ) ;

error = MPI---Get---count ( & status ,
MPI---DOUBLE , & count ) ;

buffer = malloc ( sizeof ( double ) * count ) ;

if ( buffer == NULL ) . . . ;

error = MPI---Recv ( buffer , count , MPI---DOUBLE ,
from , tag , MPI---COMM---WORLD , & status ) ;

Programming with MPI – p. 26/??



Checking for Messages (1)

• Real probe function is called MPI---Iprobe

It returns immediately even if no matching message

An extra Boolean argument saying if there is one

• If there is one, it behaves just like MPI---Probe
• If there isn’t one, the status is not updated

It’s so similar, shall show only the actual differences

Programming with MPI – p. 27/??



Checking for Messages (2)

Fortran example:

LOGICAL :: flag

CALL MPI---Iprobe ( from , tag , &

MPI---COMM---WORLD , flag , status , error )

C example:

int flag ;

error = MPI---Iprobe ( from , tag ,
MPI---COMM---WORLD , & flag , & status ) ;

Programming with MPI – p. 28/??



Wild Cards (1)

• You can accept messages from any process
Just use MPI---ANY---SOURCE for from

The actual source is stored in the status
using the name MPI---SOURCE

Fortran example: status(MPI---SOURCE)

C example: status . MPI---SOURCE

• Be warned – your footgun is now loaded

Programming with MPI – p. 29/??



Wild Cards (2)

• You can accept messages with any tag
Just use MPI---ANY---TAG for tag

Use the name MPI---TAG like MPI---SOURCE

I advise using the tag for cross--checking
• It could be a message sequence number
• Or identify the object being transferred
• Or whatever else would help debugging

• On receipt, check it is what you expect
If it isn’t, you can write your own diagnostics
Including as much program state as you want

Programming with MPI – p. 30/??



Fortran Example

INTEGER :: error , count , from , tag , &
status ( MPI---STATUS---SIZE )

CALL MPI---Probe ( MPI---ANY---SOURCE , &

MPI---ANY---TAG , MPI---COMM---WORLD , &

status , error )
CALL MPI---Get---count ( status , &

MPI---DOUBLE---PRECISION , count , error )

from = status ( MPI---SOURCE )

tag = status ( MPI---TAG )

Programming with MPI – p. 31/??



C Example

int error , from , tag , count ;

MPI---Status status ;

error = MPI---Probe ( MPI---ANY---SOURCE ,
MPI---ANY---TAG , MPI---COMM---WORLD ,
& status ) ;

error = MPI---Get---count ( & status ,
MPI---DOUBLE , & count ) ;

from = status . MPI---SOURCE ;

tag = status . MPI---TAG ;

Programming with MPI – p. 32/??



Message Ordering (1)

Each process has a FIFO receipt (queue)
Incoming messages never overtake each other

Every probe and receive match in queue order
First message that satisfies all of the constraints

Probe and receive get same message if
• There has been no intervening receive
• Same communicator, source and tag

Other safe usages, too, but that one is easy

Programming with MPI – p. 33/??



Message Ordering (2)

If you probe using wild cards, you can also
extract the source and tag from status
and then use those values in the receive

If process A does multiple sends to process B
those messages arrive in the same order

• No ordering if sender or receiver differ
And messages can be delayed considerably

Programming with MPI – p. 34/??



Tag Warning

The main purpose of tags is not for checking
It’s to allow independent communication paths

Many books and Web pages will describe that use
Some will even encourage it

Don’t do it

It’s the equivalent of cocking your footgun
Using tags like that is very hard for experts

• I will contradict myself later, under I /O

Programming with MPI – p. 35/??



Buffered Sends (1)

These are trivial to use, but need extra mechanism

• Default buffer size is implementation dependent
and doesn’t even have to be documented!

IBM chose to use 8 bytes for poe

• So you have to allocate a buffer first
It’s just a block of memory – any type will do

That’s really the only extra complexity
And you can usually just make it very big

Programming with MPI – p. 36/??



Buffered Sends (2)

You attach a single buffer to a process
not a communicator – why not?

When you have finished doing transfers, detach it
• It is used for scratch space by MPI in between
Best to set immediately after MPI---Init

And detach immediately before MPI---Finalize

The MPI standard is (unusually) not very clear
Does the detach read its arguments or not?
I recommend setting them before the call anyway

Programming with MPI – p. 37/??



Buffered Sends (3)

When a buffer is in use by MPI

• Do NOT fiddle with it in ANY way!
Its use and contents are completely undefined

• Watch out in garbage--collected languages
Make sure that the buffer will not move around

• Even in Fortran and C
Make sure that it does not go out of scope
Or falls foul of Fortran copy--in/copy--out

Programming with MPI – p. 38/??



Allocating a Buffer (1)

Fortran example:

INTEGER , PARAMETER :: buffsize = 10000
CHARACTER :: buffer ( buffsize )
INTEGER :: oldsize , error

CALL MPI---Buffer---attach ( buffer , buffsize , error )

oldsize = buffsize
CALL MPI---Buffer---detach ( buffer , oldsize , error )

Detach returns the values previously stored
I have no idea what this means for buffer!

Programming with MPI – p. 39/??



Allocating a Buffer (2)

C example:

#define buffsize 10000
void * buffer = malloc ( buffsize ) , * oldbuff;

int oldsize , error ;

error = MPI---Buffer---attach ( buffer , buffsize ) ;

oldbuff = buffer ;

oldsize = buffsize ;

error = MPI---Buffer---detach ( & oldbuff , & oldsize ) ;

Note the indirections (&) in detach
Detach stores the values previously stored

Programming with MPI – p. 40/??



Use of Buffered Sends (1)

Using them is generally not advisable
They usually hide problems rather than fix them
And they can be quite a lot less efficient

If you have a completely baffling failure
try changing all sends to buffered

• If that helps, you have a race condition
You then must track it down and fix it properly

The other main use is for I /O (see later)

Programming with MPI – p. 41/??



Use of Buffered Sends (2)

You can calculate how much space you need

Constant MPI---BSEND---OVERHEAD

Function MPI---Pack---size

Function MPI---Sizeof

[ Only in Fortran ]

Using those is overkill for almost all programs
This course doesn’t describe their use

Programming with MPI – p. 42/??



Epilogue

There is more on point--to--point later
Mainly non--blocking (asynchronous) transfers

But we have covered most of blocking transfers
Exercises will try out quite a lot of this

Main one is to code a rotation collective
Each process sends to its successor
And the last one sends back to the beginning

Programming with MPI – p. 43/??



Practicals

Practicals often use buffered or synchronous sends
Reason is to expose or hide cases of deadlock

• This is advised only when testing
You should normally use ordinary sends

Programming with MPI – p. 44/??


	Digression
	Using Point-to-Point
	Envelopes
	Receive Status (1)
	Receive Status (2)
	Receive Status (3)
	The Simplest Use
	Fortran Example (1)
	Fortran Example (2)
	C Example (1)
	C Example (2)
	Beyond That
	Blocking (1)
	Blocking (2)
	Blocking (3)
	Transfer Modes (1)
	Transfer Modes (2)
	Composite Send and Receive (1)
	Composite Send and Receive (2)
	Composite Send and Receive (3)
	C Example
	Unknown Message Size (1)
	Unknown Message Size (2)
	Fortran Example
	C Example
	Checking for Messages (1)
	Checking for Messages (2)
	Wild Cards (1)
	Wild Cards (2)
	Fortran Example
	C Example
	Message Ordering (1)
	Message Ordering (2)
	Tag Warning
	Buffered Sends (1)
	Buffered Sends (2)
	Buffered Sends (3)
	Allocating a Buffer (1)
	Allocating a Buffer (2)
	Use of Buffered Sends (1)
	Use of Buffered Sends (2)
	Epilogue
	Practicals

