Programming with MPI
Error Handling

Nick Maclaren

May 2008

Error Handling (1)

Most standards get this hopelessly wrong
MPI gets it at least half right, as follows:

All invalid uses are defined to be erroneous
Implementations are encouraged to detect them

Most undefined results are detectable
E.g. they are set to a special, invalid value

Most nonsense is defined to be erroneous
E.g. you cannot legally create a deadlock

Error Handling (2)

No concept of conforming but undefined
I.e. it’s a valid program with no known meaning

C Is infested with it, Fortran/C++ use it
MPI has it, but only as bugs in the standard

The default error handling is to stop
Not handling errors is fairly fail-safe in MPI

Error Handling (3)

However, all is not sweetness and light:

Implementations not required to detect errors
Some errors are usually detected, others rarely are

MPI has not specified a debugging mode
Error detection is at the whim of your implementor

Ones that can be detected locally usually are
e.g. providing an out-of-range process number
Inconsistencies across collectives may be

Error Handling (4)

Some errors are almost undetectable
They include most language/MPI interface ones
E.g. incorrect datatype for the buffer type

Non-MPI ones are obviously not handled
And they may cause MPI to fail horribly

MPI can’t fix up other standards’ defects!

Changing Error Handling

There are programmable error handling facilities

But they don’t allow actual recovery
Ask me if you want to know why this is unavoidable

You can use them only for cleaning-up
Including writing your own diagnostics

But do look at the implementation documents
MPI encourages documented enhancements

Simple Error Handling (1)

There are several predefined error handlers
MPI_ERRORS_ARE_FATAL is the default

MPI ERRORS_ RETURN returns an error code
Fortran last argument, and C function result

Simple Error Handling (2)

You attach the setting to a communicator
I recommend setting it early, and setting it once
And setting it consistently across processes

The call to do that is one that has changed name:
MPI_Comm_set_errhandler (new name)

MPI_Errhandler_set (old name)

If an MPI function returns an error code
i.e. anything that isn’t MPI_SUCCESS

Call your code to diagnose, clean-up and stop

Simple Error Handling (3)

Error codes are implementation dependent
A function to map them into an error string
You should use this for reasonable diagnostics

You do this by calling MPI_Error_string

Maps the error code to a textual message
Maximum length MPI_MAX_ERROR_STRING

This is a block of text and not a C string
The length is returned via a separate argument

Warning — Edge of Clitt

MPI_ERRORS_RETURN is dangerous

You must test for errors in ALL calls
One undetected error will cause chaos later

But this facility can be very useful
You can write your own, helpful diagnostics
You can flush all your output to files
You can tidy up external state and not just crash

Also can be used temporarily for debugging
Best to set the mode just around the failing call

Fortran Error Handling (1)

INTEGER :: error

CALL MPI_Comm_set_errhandler (&
MPI_COMM_WORLD , &
MPI_ERRORS_RETURN, error)

Old versions of gfortran do not support this
There was a bug in generic resolution handling
There is a truly mind-boggling bypass if you need it

Fortran Error Handling (1.5)

This code works — heaven alone knows why!
It’s harmless (but unhelpful) on other systems

INTEGER :: error, junk

junk = MPI_COMM_WORLD

CALL MPI_Comm_set_errhandler (&
junk , &
MPI_ERRORS_RETURN, error)

Fortran Error Handling (2)

INTEGER :: error , length , temp
CHARACTER &
(LEN = MPI_MAX_ERROR_STRING) :: message

< call some MPI function >
IF (error /= MPI_SUCCESS) THEN

CALL MPI_Error_string (error , &
message , length , temp)
PRINT * , message(1:length)
CALL MPI_Abort (MPI_COMM_WORLD , &

1,temp)
END IF

C Error Handling (1)

Int error ;

error = MPI_Comm_set_errhandler (
MPI_COMM_WORLD ,
MPI_ERRORS_RETURN) ;

C Error Handling (2)

int error , length ;
char message [MPI_MAX_ERROR_STRING + 1];

< call some MPI function >
if (error = MPI_SUCCESS) {

MPI_Error_string (error , message ,
& length) ;
procname [length | =\0’ ;
printf ("%s\n" , message) ;
MPI_Abort (MPI_COMM_WORLD , 1) ;

]

Note the way that the length is returned

Advanced Error Handling (1)

Can also map error codes into error classes
with the function MPI_Error _class

A documented set of 60 distinct values
with names MPI_ERR ...

Use these to distinguish various types of error

You may want to do this, for advanced handling
I can’t offhand imagine why, but it’s there

Advanced Error Handling (2)

Can define your own error handlers
Just functions to call when there is an error

Safer than using MPI_ERRORS_RETURN
Provided that you code the function carefully

Just the same logic as for MPI_ERRORS_RETURN
in the examples that were given above

This course doesn’t cover it, for simplicity
Experienced programmers will have no trouble

Advanced Error Handling (3)

Functions are:
MPI_Comm_create_errhandler (new name)

MPI_Errhandler_create (old name)
MPI_Errhandler_free

C type name MPI_Handle_function
And a MPI constant MPI_ERRHANDLER_NULL

Very Advanced Error Handling

I recommend not doing any of this
Even most experts will never need or want to

Error handling is, in fact, purely local

Every process can have a different handler
Actually, every communicator in every process ...
Also, MPI 2 extended it to some other classes

You can also change it whenever you want
For saving and restoring the old one, you need:
MPI_Comm_Get_errhandler (new name)

MPI_Errhandler_get (old name)

Epilogue

That’s more-or-less all there is to MPI errors

The only exercise is to try the simple case out

	Error Handling (1)
	Error Handling (2)
	Error Handling (3)
	Error Handling (4)
	Changing Error Handling
	Simple Error Handling (1)
	Simple Error Handling (2)
	Simple Error Handling (3)
	Warning -- Edge of Cliff
	Fortran Error Handling (1)
	Fortran Error Handling (1.5)
	Fortran Error Handling (2)
	C Error Handling (1)
	C Error Handling (2)
	Advanced Error Handling (1)
	Advanced Error Handling (2)
	Advanced Error Handling (3)
	Very Advanced Error Handling
	Epilogue

