Programming with MPI

Problem Decomposition

Nick Maclaren

March 2010

Summary

This lecture doesn’t teach you what to do
That is fundamentally problem-dependent

It describes some important possibilities

Objective (1)

If all processes do the same work, no speedup
A problem must be split between MPI processes

So the requirement is to divide up the work
Many scientific requirements work on updatable data
E.g. the matrix in Cholesky decomposition

There’s often too much for any one of the processes

So we consider dividing up the data, too

Objective (2)

This has nothing to do with MPI, as such
It applies to all distributed memory parallelism
And, to some extent, to shared memory codes

It is usually more difficult than using MPI
But it is critical to the resulting efficiency

Same thing applies to shared memory parallelism, too
But details of requirements and constraints differ

Best Approach

Remember: KISS — Keep It Simple and Stupid
Always start with simplest usable partitioning
Design your program to allow for change later
Balance the workload across processes
Minimise the amount of communication needed

Gathering data is what reductions are for

Embarrassingly Parallel (1)

E.g. Monte-Carlo work or parameter searching
Divides naturally into lots of separate tasks
Each task is largely independent of each other

A master process spawns tasks and collects results
No interaction except during start and termination

Just divide the tasks between processes
Normally, give all of them an equal number

Very often, that’s all you need to do

I_:rOc n ol _1

Embarrassingly Parallel (2)

Remember the Mandelbrot set example?

That divided into sections along the Y axis
It didn’t work very well, as we saw

Problem was correlation of time with partitioning

Randomising points to processes was much better

Can often use a cyclic partitioning instead
Anything that breaks up the correlation

Embarrassingly Parallel (3)

Problem is if task time is very variable
Easiest to regard as a statistical distribution

Easy when standard error is smaller than mean
Harder when it is much larger than mean

Relies on the Law of Large Numbers
Give each process lots of tasks in a run
Preferably much more than

If you can’t, only problem is inefficiency

Very Nasty Distributions

The Law of Large Numbers does not always hold
Doesn’t work if time distribution has no mean
Unfortunately, that really does happen in practice

Need to be a bit cleverer in that case
Write a simple queue manager

The technique is useful anyway, so worth learning
But won’t necessarily deliver high efficiency
However, if it doesn’t, nothing will

Using Queuing

Master gives each worker process one task to do
Gives it another when it finishes the last

Master process doesn’t do any computation
Can get it to do so, but more advanced use

Writing a queue manager isn’t difficult
Good exercise in using MPI_Waitany

Still a problem if some tasks don’t complete
Can introduce statistical and numerical problems

Partitioning (1)

In general, more communication is involved
Need to decide how to partition the problem

Try to minimise inter-process communication
Objectives were covered under tuning — remember:

Amount of data transferred between processes
Number of transactions involved in transfer
When one process is waiting for another

Following slides describe some possibilities

Partitioning (2)

Problem may have semi-separate components
E.qg. different species in an ecology

Problem may have a graph structure
In mathematics, that is nodes connected by links

The nodes are the units of data
The links are the communication paths

Generally, look for division that minimises links
A compromise with balancing workload
= If it works well enough, it’s right

Graph Partitioning

Rectangular Grids (1)

Problem/data may be in a rectangular grid
Most books and Web pages consider only this one

Regularity means that can analyse properties
Can sometimes choose best design before coding
Usually easy to parameterise, and tune by experiment

ScalLAPACK puts a lot of effort into supporting this
But it ends up being too complicated and confusing

Rectangular Grids (2)

Usually, divide into contiguous blocks
Gives good locality for simple, uniform problems

Best to start here, parameterising block layout
At least the size of blocks, and often shape

Dividing into strips or layers rarely as efficient
It usually involves more communication

F
F -
F
F

===l === = =4 - = = |||_||||_|||+|||"

F
i
F
F

F
i
F
F

o8 AL
D |F

m mrr" _.rm
m ¥-3-%
0:0i0:0[aiainin
oiolalaiala
000 0|lninaln:
B"BmBmBm
< << <|miaiaio
< <|m @ m o«
.... <i<i<|oimiaia

Rectangular Grids (3)

Sometimes do better with cyclic distribution
There are many variants of cyclic distributions

Can combine — e.g. cycles of blocks
Or cyclic in one dimension and blocked in another
Or ...

The simplest solution that works is best

2—D Cyclic Partitioning (1)

C

C

C

C

A

A
B

A
B

A
B

C

C

C

C

A

A
B

A
B

A

C

C

C

C

A

A
B

A
B

A
B

C

C

C

C

A
B

A
B

A
B

A
B

2—D Cyclic Partitioning (2)

A

A

AlB|C|D

A|B |C|D

AB|C|D

AlB|C|D

AlB|C|D

A(B|C|D

A(B|C|D

AB|C|D

AlB|C|D

D

AlB|C|D

D

C

AlB|C|D

AB|C|D

C

AlB|C|D

Non-Uniform Problems

Problems are very commonly non-uniform
Consider fluid flow around a sharp corner

Uniform partitioning may not work very well
No option but to balance workload better
E.g. multi-grid, mesh refinement,
coordinate transformation, ...

More complicated to program and tune
But sometimes gives vastly improved efficiency

Remember, always start with simple partitioning

A

IIIIIIIIIIIIIIII

A

D
D
D

|||||||||||||||||||||||||

icic|p|E

A
A
A
B
B B
B
B |C
B |C

||||||||||||

|
|
I
|
|
|
R
I
|
|
+
I
|
|

A
A

A
A8
AlB
B

B

||||||||||||||||

LFlert-
F iR
J

|||||||||||||||||||||||||||||||

Fm—mlm = = - - - = = |||_||||_|||+|||"

A
A
A

A
B

1
|
1
-
|
|
|
F===l==- R — R — _— e R — R—— _— -
|
|
|
1
|
|
|
|
|
-
I
1
|
r
1
|
|
|
|
I
1

Transformed Mesh

Non-Rectangular Grids

Rectangles are not the only space-filling shapes

Triangles (in , tetrahedra) are common, too
A common decomposition in finite-element work

These are regular, but trickier to code

And you may come across other ones — not all regular

Triangles (or Hexagons)

\'

Voronoi/Delaunay/Dirichlet

Also Voronoi diagrams, a.k.a. Dirichlet tesselation
a.k.a. Delaunay triangulations etc.
May be taught these in mesh generation lectures

These are generally used for irregular problems
Regard this as a form of graph partitioning

Some very useful mathematical properties

Voronol is areas nearer to a point than any other
Delaunay has least ill-defined (long, thin) triangles
Used for efficient N-D searching and in other ways

Voronol Diagram (a.k.a. Tesselation)

Communication

Sometimes this is explicit in the problem
E.g. when modelling systems of active components

Very common when problem has graph structure
The links are communication paths

Just code it, using MPI’s facilities
Minimise wait time and amount of data transferred

Non-Local Data Access

More often in form of non-local data access
Two common variants of this one:

Direct access, immediately the code needs it
This is often called virtual shared memory

Division of computation into time-steps
Communicate data in between time-steps

Latter most common use of distributed memory

Virtual Shared Memory

You are strongly advised to be cautious
It’s extremely hard to design and use correctly

Some designs (e.g. Fortran coarrays) support this
But experts spend a long time designing them

They will often be built on a basis of MPI
Problem isn’t with MPI, but design and discipline

those designs, but don’t invent your own

Time-Step Designs

Very common for things like PDEs and ODEs
So you you may well be using them anyway

You can then resynchronise data each time-step
Can do it either by reading or writing:

Broadcast local data between each time-step
Use others’ previous data during next time-step

Create updates to other processes’ data
Send them to other process between each time-step
Less commonly used — and covered further

General Approach

Each process owns a subset of the global data
It updates it — other processes only read it
In the simplest case:

All processes broadcast all data between steps
Complete, global read access during next time-steps

Good if long time-steps, and amount of data small
May be too much data, or broadcast cost too high

Advantage is very easy to design and use correctly

Boundary Data Sharing (1)

Can distribute only data that will be needed
Typically the data near the boundary of processes

PDEs obvious example — need only nearby data
Obviously more complicated to design and program
But can reduce amount of memory a great deal

And reduce communication cost even more

Keep your design simple, and code it carefully
Don’t worry about minor inefficiencies

Boundary Data Sharing (2)

Each process stores its own data plus boundaries
I.e. surrounding data owned by other processes

Updates only its own data, not boundaries
Gets updated boundaries from other processes

Sends its own edge data to nearby processes

Boundary Regions

FFFF
Q- mmmnme e B
L e B B
O 0 0V|eia o a
O 0 O0Ooao oo
0.0 0 0aia oo
0 0 OlY|[ANETETE
< < <i</[miim @ o
< < <i<|/olm 0 m
< < <i<l/|lw'®m @ =
< < AMA M 0 o m

Scalability Warning

Generally assumes boundaries are very thin
If this is not so, better to broadcast all data
Two guidelines for when to do that:

Most of the data is in some node’s boundary
You probably won’t gain any performance

Boundaries go beyond the immediate neighbours
That’s fiendishly hard to program correctly
Multi-cell boundaries are no problem, however

Repartitioning

Part of program needs one partition design
And other parts need other partition designs

You can repartition between those parts
Obviously worthwhile only if parts are heavyweight
Repartitioning all data can be extremely slow

Key is to keep parts of program very separate
Almost like different programs merged into one

Generally, not worthwhile on simple programs

Reblocking

Probably the simplest form of repartitioning
Takes one blocked design and converts to another

Think of matrix transpose — e.g. MPI_Alltoall
Commonly used to implement n-D FFTs efficiently

For those, FFT algorithm is used on one dimension
It applies that to the others as vector data

Most efficient if processes divide up the vectors
So reblock/transpose between each dimension’s FFT

An Extra Lecture

MPI has some management facilities for this
Not covered, but there are slides and practicals
Worth using for parameterised decompositions

Topologies
Allow managing n-D indexing more generically

MPI also has facilities for graph decompositions
Definitely complicated, but graph decomposition is

Reminder

Partitioning is key to efficiency in many problems
Don’t rush in — design it carefully
Choose the one that best matches your problem

KISS — Keep It Simple and Stupid

Practicals

There are some heavyweight practicals
Very similar to using MPI ““for real”

The first is master/worker controller code
Useful for embarrassingly parallel problems
It iIs much than it looks

Second is a grid decomposition problem
Like most code for PDEs, finite elements etc.
It iIs much than it looks

= Don’t bother now — you don’t have time

Omitted Lectures

Some material in previous lectures (like progress)
Error Handling — for diagnostics and tidying up
Communicators etc. — using subsets of processes

More on Point-to-Point
Mainly non-blocking (asynchronous) transfers

Topologies — managing n-D indexing

The Extra Lectures — mainly more detail

Extra Lectures (1)

Follow the guidelines here and rarely need them
Worth scanning later, for use with production code

Miscellaneous Guidelines contains extracts
It covers what you absolutely Know

More detalls are in the following three lectures:

Extra Lectures (2)

Composite Types and Language Standards
It’s mainly more on what not to do
But avoiding the “‘gotchas’” is very important

Debugging, Performance and Tuning
A lot of things that you don’t want to know
But which you may need to, if you are unlucky

Attributes and I/0
It’s mainly going though I/O handling in detail

Extra Lectures (3)

You probably won’t want to look at any of these

One-sided communication
Absolute basics about MPI's RDMA support

Advanced Completion Issues
About point-to-point usage I don’t recommend

Other Features Not Covered
What the course doesn’t cover and why

	Summary
	Objective (1)
	Objective (2)
	Best Approach
	Embarrassingly Parallel (1)
	Embarrassingly Parallel (2)
	Embarrassingly Parallel (3)
	Very Nasty Distributions
	Using Queuing
	Partitioning (1)
	Partitioning (2)
	Rectangular Grids (1)
	Rectangular Grids (2)
	Rectangular Grids (3)
	Non-Uniform Problems
	Non-Rectangular Grids
	Voronoi/Delaunay/Dirichlet
	Communication
	Non-Local Data Access
	Virtual Shared Memory
	Time-Step Designs
	General Approach
	Boundary Data Sharing (1)
	Boundary Data Sharing (2)
	Scalability Warning
	Repartitioning
	Reblocking
	An Extra Lecture
	Reminder
	Practicals
	Omitted Lectures
	Extra Lectures (1)
	Extra Lectures (2)
	Extra Lectures (3)

