
Programming with MPI

Topologies

Nick Maclaren

nmm1@cam.ac.uk

September 2012

Programming with MPI – p. 1/??

Topologies

Topologies are how the processes are connected
MPI’s virtual topologies map the program structure
• Independent of the actual hardware network

Topologies are almost essential if:
You are writing structure--generic libraries
Your program has a variable graph structure

Both are seriously advanced use – be warned

In theory, can match the network for performance
• In practice, that almost never helps at all

Programming with MPI – p. 2/??

Cartesian Topologies (1)

Consider the simplest case of Cartesian topologies
These are a N--dimensional grid of MPI processes
A very common distribution in scientific code

You can specify whether each dimension is periodic

No dimensions periodic is a N--dimensional grid
All dimensions periodic is a N--dimensional torus
Some dimensions periodic is a (hyper--)cylinder

Programming with MPI – p. 3/??

2−D Grid/Mesh

Programming with MPI – p. 4/??

2−D Torus

Programming with MPI – p. 5/??

Cylinder

Programming with MPI – p. 6/??

Cartesian Topologies (2)

You use MPI---Cart---create exactly like MPI---Split

It creates a new communicator with a topology

You pass the dimensions of the grid, not the colour
You say whether the dimension is periodic or not

You say if the implementation may reorder processes
This might result in improved performance

MPI---Cart---create (oldcomm , ndims ,
dims , periodic , reorder , newcomm)

Programming with MPI – p. 7/??

Cartesian Topologies (3)

ndims may be zero, but that’s advanced use

Excess processes return MPI---COMM---NULL

Too few processes is an error – don’t do it

Allow reordering, unless you have reason not to
Without reordering, the ranks stay the same
Grid points map to ranks in C array order

Programming with MPI – p. 8/??

Fortran Example (1)

Let us assume that we have 8 processes

INTEGER :: newcomm , error

INTEGER , PARAMETER :: dims (2) = (/ 2 , 3 /)

LOGICAL, PARAMETER :: reorder = .TRUE. , &

periodic (2) = .FALSE.

CALL MPI---Cart---create (MPI---COMM---WORLD , &

SIZE (dims) , dims , periodic , reorder , &

newcomm , error)

In 2 processes, newcomm is MPI---COMM---NULL

The rest are in the new communicator, in some order

Programming with MPI – p. 9/??

Fortran Example (2)

INTEGER :: newcomm , error

INTEGER , PARAMETER :: dims (2) = (/ 2 , 3 /)

LOGICAL, PARAMETER :: periodic (2) = .FALSE.

CALL MPI---Cart---create (MPI---COMM---WORLD , &

SIZE (dims) , dims , periodic , .FALSE. , &

newcomm , error)

Rank Grid Rank Grid

0 (0,0) 4 (1,1)

1 (0,1) 5 (1,2)

2 (0,2) 6 None

3 (1,0) 7 None

Programming with MPI – p. 10/??

C Example

MPI---Comm newcomm ;

static const int dims [] = { 2 , 3 } ,
periodic [] = { 0 , 0 } , reorder = 1 ;

int error ;

error = MPI---Cart---create (MPI---COMM---WORLD ,
2 , dims , periodic , reorder ,
newcomm) ;

In 2 processes, newcomm is MPI---COMM---NULL

The rest are in the new communicator, in some order

reorder = 0 does the same as in Fortran

Programming with MPI – p. 11/??

Creating a Grid (1)

Store any fixed dimensions in an integer vector
And set all of the other elements to zero

Pass the number of nodes; it fills in the vector
Tries to make the dimensions about the same sizes

It is an error if there is no exact decomposition
But results like (257,1,1,1,1,1,1,1,1,1) are not

Use this if it helps – ignore it if it doesn’t

Programming with MPI – p. 12/??

Creating a Grid (2)

Fortran example:

INTEGER :: comm , nprocs , dims (3) , error
CALL MPI---Comm---size (&

MPI---COMM---WORLD , nprocs , error)

CALL MPI---Dims---create (nprocs , 3 , dims , error)

C example:

MPI---Comm comm ;

int nprocs , dims [3] , error ;

error = MPI---Comm---size (MPI---COMM---WORLD ,
nprocs) ;

error = MPI---Dims---create (nprocs , 3 , dims) ;

Programming with MPI – p. 13/??

Finding Coordinates

MPI---Cart---coords converts a rank to coordinates

Fortran example:

INTEGER :: comm , rank , coords (3) , error
CALL MPI---Cart---coords (comm , rank , 3 , &

coords , error)

C example:

MPI---Comm comm ;

int nprocs , coords [3] , rank , error ;

error = MPI---Cart---rank (comm , rank ,
3 , coords , error) ;

Programming with MPI – p. 14/??

Finding Ranks

MPI---Cart---rank converts coordinates to a rank

You do not specify the number of dimensions

Fortran example:

INTEGER :: comm , coords (3) , rank , error
CALL MPI---Cart---rank (comm , coords , rank , error)

C example:

MPI---Comm comm ;

int nprocs , coords [3] , rank , error ;

error = MPI---Cart---rank (comm , coords ,
& rank , error) ;

Programming with MPI – p. 15/??

Nearby Processes

The rank that is ±N along a dimension
The function is MPI---Cart---shift if you want it

When they go over the limit, periodic ones wrap
and others return MPI---PROC---NULL

Does not enable you to go up a diagonal
You have to use MPI---Cart---rank for that

Not covered further for that reason, but it works
Most people will probably use only MPI---Cart---rank

Programming with MPI – p. 16/??

Subspaces

You very often want to work with subspaces of grids
E.g. using rows/columns of a matrix
You can create derived communicators to do just that

Like MPI---Comm---split, it returns multiple ones

E.g. each row will be in its own communicator

MPI---Cart---sub takes a Boolean array argument

You specify the dimensions you want included
The others create separate communicators

Programming with MPI – p. 17/??

Subsetting by Rows

MPI_Comm_cart

MPI_Comm_sub

Programming with MPI – p. 18/??

Fortran Example

If MPI---Cart---create returned a 3--D grid in comm

INTEGER :: comm , newcomm , error
LOGICAL, PARAMETER :: keep (3) = &

(/ .TRUE. , .FALSE. , .TRUE. /)

CALL MPI---Cart---sub (comm , keep , newcomm , error)

Each plane in dims 1 and 3 will be a communicator
Each index in dimension 2 will return a separate one

Programming with MPI – p. 19/??

C Example

If MPI---Cart---create returned a 3--D grid in comm

MPI---Comm comm , newcomm ;

int error ;

static const int keep [3] = { 1 , 0 , 1 } ;

error = MPI---Cart---sub (comm , keep , newcomm) ;

Each plane in dims 1 and 3 will be a communicator
Each index in dimension 2 will return a separate one

Programming with MPI – p. 20/??

Query Functions

• It is a bad idea to fix assumptions in library code
Libraries should query environment and use that data
Library code should be as generic as is reasonable

• Obviously, return an error if they can’t handle it

• These are also very useful for debugging
Answer ‘‘Is the code in the state it should be?‘‘
Most people will use them only for that, but that’s fine

Programming with MPI – p. 21/??

Checking the Topology (1)

You can check if a communicator has a topology

The returned value is an integer, which is one of:
MPI---UNDEFINED (none),
MPI---CART (Cartesian),
MPI---GRAPH or MPI---DIST---GRAPH

Fortran example:

INTEGER :: comm , result , error
CALL MPI---Topo---test (comm , result , error)

Programming with MPI – p. 22/??

Checking the Topology (2)

C example:

MPI---Comm comm ;

int result , error ;

error = MPI---Topo---test (comm , & result) ;

Programming with MPI – p. 23/??

Number of Dimensions

You can get the number of number of dimensions
The communicator must be Cartesian

Fortran example:

INTEGER :: comm , ndims , error
CALL MPI---Cartdim---get (comm , ndims , error)

C example:

MPI---Comm comm ;

int ndims , error ;

error = MPI---Cartdim---get (comm , & ndims) ;

Programming with MPI – p. 24/??

Cartesian Information (1)

You can get all of the other information, too
One call gets the dimensions, periodicities and

grid coordinates of calling process
The communicator must be Cartesian

Fortran example:

INTEGER :: comm , dims (3) , coords (3) , error
LOGICAL :: periodic (3)
CALL MPI---Cart---get (comm , 3 , dims , &

periodic , coords , error)

Programming with MPI – p. 25/??

Cartesian Information (2)

C example:

MPI---Comm comm ;

int dims [3] , periodic [3] , coords [3] , error ;

error = MPI---Cart---get (comm , 3 , dims ,
periodic , coords) ;

Programming with MPI – p. 26/??

Graph Topologies

Some programs have a natural graph topology
This is always messy to code, which causes errors
• Design your program very carefully

Fixed graph topologies are relatively straightforward
But are inflexible and very often poor design
Modifying them is very messy and error--prone
• But variable ones are seriously advanced use

MPI topologies may help to simplify your code
MPI 3.0 will add a lot of useful collectives
They are not covered further in this course

Programming with MPI – p. 27/??

Graph Structure

1

4

5 9

10

11

12

8

7

6

0

2

3

13

14

1516

17

1819

2021

22

23

24

28

25

26

29

Programming with MPI – p. 28/??

Epilogue

That is essentially all about Cartesian topologies

A few simple exercises to play with them

Programming with MPI – p. 29/??

	Topologies
	Cartesian Topologies (1)
	Cartesian Topologies (2)
	Cartesian Topologies (3)
	Fortran Example (1)
	Fortran Example (2)
	C Example
	Creating a Grid (1)
	Creating a Grid (2)
	Finding Coordinates
	Finding Ranks
	Nearby Processes
	Subspaces
	Fortran Example
	C Example
	Query Functions
	Checking the Topology (1)
	Checking the Topology (2)
	Number of Dimensions
	Cartesian Information (1)
	Cartesian Information (2)
	Graph Topologies
	Epilogue

