
Programming with MPI

Debugging, Performance and Tuning

Nick Maclaren

nmm1@cam.ac.uk

March 2008

Programming with MPI – p. 1/??

Available Implementations

Two open source versions – MPICH and OpenMPI

Most vendors have own, inc. Intel and Microsoft

Wide range of tuning and debugging tools
Mostly commercial, but not all

Or can use built--in profiling interface
Easy to use and can help with debugging

• Not ideal, but consensus is pretty good
This lecture is just the general principles

Programming with MPI – p. 2/??

Debugging vs Tuning

In practice, these overlap to a large extent

• Tuning MPI is more like tuning I /O than code

Many performance problems are logic errors
E.g. everything is waiting for one process

Many logic errors show up as poor performance

• So don’t consider these as completely separate

Programming with MPI – p. 3/??

Classes of Problem (1)

• Most common is breach of language standard
Parallelism exposes aspects that you never realised

Generally, debuggers and other tools don’t help
The aspects are usually subtle ones of semantics
Most books and Web pages are very misleading

This is why my courses often seem too pedantic
I warn about issues that you hope you don’t see
Contact your supervisor for advice

Programming with MPI – p. 4/??

Classes of Problem (2)

• Second most common is logic errors
You wrote what you meant, but that doesn’t work

E.g. distributing data/work between processes

Debuggers and other tools help only a little
You need to find how things went wrong, and why

Recommendations in this course are for safety
They should help to minimise these
• But this class of problem is unavoidable

Programming with MPI – p. 5/??

Classes of Problem (3)

• Least common is MPI coding errors
E.g. a receive with no matching send

Parallel debuggers help a lot with this
But do what I say, and such bugs should be rare

Most programmers don’t use parallel debuggers
Some others find them very helpful

Programming with MPI – p. 6/??

Programming with MPI – p. 7/??

My Hobby-Horse (1)

A good language would prevent 90% of errors
though only a few logic errors, of course

A restricted subset of MPI would allow checking
Would then be easy to detect many common errors
It would only help with the ones entirely in MPI

Most modern languages are complete ****
As far as error detection and prevention go
Ada is the main exception, possibly Python
Fortran 2003 goes a little way towards that

Programming with MPI – p. 8/??

My Hobby-Horse (2)

We can agree that flexibility and features are good

Modern dogma is that restrictions are always bad
and languages should define only correct code
and performance always trumps correctness

• I am a heretic – that is totally false

Checked restrictions are the programmer’s friend
Longer to get running, but quicker to get working

Which is why I say to impose your own restrictions

Programming with MPI – p. 9/??

My Hobby-Horse (3)

Programming MPI shows this very clearly

Very hard to debug even a known correct algorithm
by doing it using general point--to--point

Back off, constrain the design (e.g. with barriers)
and it’s hard to tell where the problem was

I believe that a language could do this for you
Would be completely different from current ones
Hoare’s BSP uses this approach

Programming with MPI – p. 10/??

Partial Solution

• Design primarily for debuggability

KISS – Keep It Simple and Stupid

This course has covered many MPI specific points

See also How to Help Programs Debug Themselves

• Do that, and you rarely need a debugger
Diagnostic output is usually good enough

• Only then worry about performance

Programming with MPI – p. 11/??

Parallel Debuggers (1)

These exist, and some people like them
None worth using are available for free
Please tell me if you find an exception

I have never more than dabbled with them
Totalview is the best--known one
Intel is also reported to be good

There are others, especially from HPC vendors

Programming with MPI – p. 12/??

Parallel Debuggers (2)

These must be integrated with
• The compiler for your language
• The MPI implementation
• The job scheduler

That is not easy to arrange
Unless you are a vendor that sells all of them!

Many vendors sign up to Etnus (Totalview)

Programming with MPI – p. 13/??

Parallel Tools

I haven’t looked at many of these
Intel bought out Pallas (Vampir)

Some open--source (free) ones might be OK
They don’t have the same problems as debuggers

I have written a (not very good) one
It’s quite easy to do, in many cases

Programming with MPI – p. 14/??

Interactive Serial Debuggers

These are, by and large, useless for MPI

• Often difficult to run them on MPI processes
Usually needs administrator--level hacking

• Often interfere with each other, badly
May cause MPI to lock up solid or fail
Debugger may display wrong results, or crash

Non--blocking transfers are a major problem
Asynchronous progress is even worse

Programming with MPI – p. 15/??

Debugging From Dumps (1)

This is usually much more successful

• Useful for when an MPI process crashes
Do that just as in the serial case

• You can usually force a dump, too
Just as you can in a serial program

• And you can often get one of each process
And compare them to see where they have got to

Programming with MPI – p. 16/??

Debugging From Dumps (2)

• Biggest problem is getting the dump
System--dependent, and may need administrator

• All dumps may be written to file ‘core’
Bad news if all in the same directory

Can often avoid that by calling chdir
Or can configure to dump to ‘core.<pid>’

• One dump per process may be too big
There are bypasses, but contact your administrator

Programming with MPI – p. 17/??

Debugging From Dumps (3)

• Main problem is not getting any dump
Or, occasionally, getting dump of wrong process
And, far too often, getting diagnostic no stack

May be a shell or system feature (e.g. ulimit)
May be a compiler or MPI implementation one
May be a PATH--related configuration issue

• Generally soluble, but no good rules
Have to investigate problem, and deal with it

Programming with MPI – p. 18/??

Built-in MPI Facility (1)

MPI provides a built--in facility for tuning
It’s useful for debugging, and some tools use it

All functions called MPI---... are wrappers

They call identical ones called PMPI---...

Exceptions are MPI---Wtime and MPI---Wtick

Plus a few MPI 2 ones we haven’t covered

Programming with MPI – p. 19/??

Built-in MPI Facility (2)

All you do is to write your own MPI---... ones

Calling the PMPI---... ones to do the work

You can put in any tracing and checking you like

There is an example in Wrappers/Wrappers.c
It supports only original MPI 1

It worked very well in simple tracing mode

Its scaling wasn’t entirely successful
It conflicted with the MPI progress engine

Programming with MPI – p. 20/??

Built-in MPI Facility (3)

• You don’t have to wrap all of the MPI functions
Wrapping the ones that you use is enough

• Keep the wrapper functions in a separate file
Then you can include them or not as you wish

It really is very easy to use

Function MPI---Pcontrol controls profiling

However, it is almost completely unspecified
It’s really just a hook for a specification

Programming with MPI – p. 21/??

MPI Memory Optimisation (1)

The examples waste most of their memory
Here are some guidelines for real programs:

• Don’t worry about small arrays etc.
If they total less than 10%, so what?

• For big ones, allocate only what you need
For example, for gather and scatter

• Reuse large buffers or free them after use
Be careful about overlapping use, of course

Programming with MPI – p. 22/??

MPI Memory Optimisation (2)

If the above doesn’t solve your problem:

• Scatter large structures across processes
This is the dreaded data distribution problem

• Read and write them in smaller sections
For very large amounts of data, it’s no slower

• Watch out for memory fragmentation
That has nothing to do with MPI as such

Programming with MPI – p. 23/??

MPI Memory Optimisation (3)

Used to be normal practice up to the 1970s
64 KB was often a lot of memory ...

It’s a pain in the neck to program
Please ask for help if you need to do it

Generally, avoid optimising for memory
Don’t waste excessive amounts, of course
But concentrate of writing clean code

• MPI itself is rarely an issue

Programming with MPI – p. 24/??

MPI Performance

• Ultimately only elapsed time matters
The real time of program, start to finish

• All other measurements are just tuning tools

This actually simplifies things considerably
See later under multi--core systems etc.

• You may want to analyse this by CPU count
Will tell you the scalability of the code

Programming with MPI – p. 25/??

Design For Performance (1)

Here is the way to do this

• Localise all major communication actions
In a module, or whatever is appropriate for you
Keep its code very clean and simple

• Don’t assume any particular implementation
This applies primarily to the module interface
Keep it generic, clean and simple

• Keep the module interfaces fairly high level
E.g. a distributed matrix transpose

Programming with MPI – p. 26/??

Design For Performance (2)

Use the highest level appropriate MPI facility
• E.g. use its collectives where possible
Collectives are easier to tune, surprisingly

Most MPI libraries have had extensive tuning
• It is a rare programmer who will do as well

mpi---timer implements MPI---Alltoall many ways

Usually, 1–2 are faster than built--in MPI---Alltoall

Not often the same ones, and often by under 2%

Programming with MPI – p. 27/??

Design For Performance (3)

• Put enough timing calls into your module
Summarise time spent in MPI and in computation

• Check for other processes or threads
Only for ones active during MPI transfers

Now look at the timing to see if you have a problem

• If it isn’t (most likely), do nothing

• Try using only some of the cores for MPI

It’s an easy change, but may not help

Programming with MPI – p. 28/??

Design For Performance (4)

• Going further, you have only one module to tune
And its code is clean and simple!

• It will also help an expert help you
Won’t have to start by reverse engineering code

The higher level the module interface is
the more scope that you have for tuning

E.g. attempting to use non--blocking transfers
may be impossible with a low level interface

Programming with MPI – p. 29/??

High-Level Approach (1)

Try to minimise inter--process communication
There are three main aspects to this:

• Amount of data transferred between processes
Inter--process bandwidth is a limited resource

• Number of transactions involved in transfer
The message--passing latency is significant

• One process needs data from another
May require it to wait, wasting time

Programming with MPI – p. 30/??

High-Level Approach (2)

Partitioning can be critical to efficiency
Some principles of that are mentioned later

You can bundle multiple messages together
Sending one message has a lower overhead

You can minimise the amount of data you transfer
Only worthwhile if your messages are large

You can arrange all processes communicate at once
Can help a lot because of progress issues

Programming with MPI – p. 31/??

Bundling

On a typical cluster or multi--core system:

Packets of less than 1 KB are inefficient
Packets of more than 10 KB are no problem

Avoid transferring a lot of small packets
⇒ Packing up multiple small transfers helps
But only if significant time spent in them

• Remember integers can be stored in doubles

Programming with MPI – p. 32/??

Advanced Tuning

This includes even use of non--blocking transfers
Reasons for that are the progress issues

They are worth learning to avoid deadlock
Can help with performance on some systems

• This course is not going to cover tuning them
Or any other such advanced tuning

Tuning I /O is more system--specific than MPI

Programming with MPI – p. 33/??

Elapsed Time (1)

Isn’t MPI---Wtime the answer? – er, no

Times don’t always mean what you think
Will describe this shortly, but it’s complicated

Need to design program for reliable timing
Design methodology can also help with debugging

But some programs don’t match it very well
It is very hard to measure the time in those

Programming with MPI – p. 34/??

Elapsed Time (2)

Any outstanding transfers make times unreliable
These are ones that have not been received

and completed for non--blocking

Note that a blocking send remains outstanding
even after the send call returns

You can call MPI---Wtime even at such times

But interpreting its value can be extremely hard

Programming with MPI – p. 35/??

Elapsed Time (3)

Simplest use that gives understandable times:

• Receive and complete all transfers
across the whole communicator, of course
[Collectives will do this automatically]

• Call MPI---Barrier on the communicator
• Call MPI---Wtime in any or all processes

All calls show roughly the same elapsed time

Programming with MPI – p. 36/??

Elapsed Time (4)

Beyond that, things can get a bit complicated

Remember collectives are not synchronised
And that point--to--point can overlap them

This lecture now describes this in more detail

Programming with MPI – p. 37/??

Progress (1)

MPI has an arcane concept called ‘‘progress’’
Good news: needn’t understand it in detail

• No valid MPI program can get stuck (hang)
I.e. MPI doesn’t allow any ‘‘deadly embraces’’

An implementation must always make progress
A programmer must not make that impossible
There are a few restrictions to ensure that is so

• Write sanely, and you will never notice them
Mistakes will happen, but fix the bug in your code

Programming with MPI – p. 38/??

Progress (2)

MPI does not specify how it is implemented
Progress can be achieved in many ways

Bad news: do need to understand these issues

• All valid MPI programs will work in all cases
But it changes the most efficient coding style

Will describe a few of the most common methods
And indicate the main consequences of them
But will start by saying how to proceed

Programming with MPI – p. 39/??

Processes vs CPUs

• More MPI processes than cores is Bad News
Some systems seem to crawl into a hole and die!

• Shared systems will have other threads running
• And remember MPI may have hidden threads

When setting MPI tuning parameters:

• Be careful with spin loops for waiting
Use only if each MPI process has its own core
Never use spin loops on a shared system

Programming with MPI – p. 40/??

Multi-Core Systems

Use of SMP systems was described earlier

If using SMP libraries , OpenMP or threading
• Use only one MPI process per system

• Otherwise, write purely serial executables
And use multiple MPI processes per system

Either works – the combination doesn’t

Programming with MPI – p. 41/??

Serial MPI Processes on SMP

Use total core count for calculations
I.e. cores/socket times sockets/system

• Consider using only some CPUs for MPI

Often increases the total performance
• Only way to find out is to time two runs

First reason is that it stresses the memory less
More codes are memory--bound than CPU--bound

Second is that it may help asynchronous progress
As mentioned, can include physical transfer

Programming with MPI – p. 42/??

Collectives (1)

They may start transferring as soon as they can
And may leave as soon as they have finished

• You can stop that by using MPI---Barrier

That can sometimes improve efficiency

It always makes initial tuning a lot easier
Calls to MPI---Wtime become reliable

Programming with MPI – p. 43/??

Collectives (2)

error = MPI---Barrier (MPI---COMM---WORLD) ;

start = MPI---Wtime () ;

error = MPI---Alltoall (. . .) ;

error = MPI---Barrier (MPI---COMM---WORLD) ;

total = MPI---Wtime () -- start ;

• After initial tuning, start removing the barriers
See if it runs faster with or without them
Remember that the barriers take time, too

• Tuning like this is generally quite easy

Programming with MPI – p. 44/??

Behind The Scenes (1)

MPI does not specify synchronous behaviour
All transfers can occur asynchronously
And, in theory, so can almost all other actions

Transfers can overlap computation, right?
Unfortunately, it isn’t as simple as that

Many I /O mechanisms are often CPU bound
TCP/IP over Ethernet is often like that

Will come back to this in a moment

Programming with MPI – p. 45/??

Behind The Scenes (2)

MPI transfers also include data management
E.g. scatter/gather in MPI derived datatypes

InfiniBand has such functionality in hardware
Does your implementation use it, or software?

Does your implementation use asynchronous I /O?
POSIX’s spec. (and .NET’s?) is catastrophic

May implement transfers entirely synchronously
Or may use a separate thread for transfers

Programming with MPI – p. 46/??

Eager Execution

This is one of the mainly synchronous methods
Easiest to understand, not usually most efficient

All MPI calls complete the operation they perform
Or as much of it as they can, at the time of call

• MPI---Wtime gives the obvious results

Slow calls look slow, and fast ones look fast

• Often little point in non--blocking transfers
But see later for more on this one

Programming with MPI – p. 47/??

Lazy Execution

This is one of the mainly synchronous methods
Just not in the way most people expect

Most MPI calls put the operation onto a queue
All calls complete queued ops that are ‘‘ready’’

• MPI---Wtime gives fairly strange results

One MPI call often does all of the work for another
The total time is fairly reliable, though

Possibly the most common implementation type

Programming with MPI – p. 48/??

Asynchronous Execution

MPI calls put the operation onto a queue
Another process or thread does the work

• MPI---Wtime gives very strange results

Need to check the time used by the other thread

• Start by not using all CPUs for MPI

Further tuning is tricky – ask for help

Fairly rare – I have seen it only on AIX
May become more common on multi--core systems

Programming with MPI – p. 49/??

Asynchronous Transfers

Actual data transfer is often asynchronous
E.g. TCP/IP+Ethernet uses a kernel thread

• One critical question is if it needs a CPU
If so, using only some CPUs may well help (a lot)

• Sometimes, non--blocking transfers work better
Even on implementations with eager execution

• And sometimes, blocking transfers do
Even with asynchronous execution

Programming with MPI – p. 50/??

Reminder

• Localise all major communication actions
In a high level module, or whatever is appropriate

• Do nothing if it performs well enough

• Consider using only some of the CPUs

• Do simple, high--level, tuning (as above)
Often just by adding or removing barriers

• Only then, worry about fine--tuning your code
E.g. comparing blocking and non--blocking

Programming with MPI – p. 51/??

	Available Implementations
	Debugging vs Tuning
	Classes of Problem (1)
	Classes of Problem (2)
	Classes of Problem (3)
	My Hobby-Horse (1)
	My Hobby-Horse (2)
	My Hobby-Horse (3)
	Partial Solution
	Parallel Debuggers (1)
	Parallel Debuggers (2)
	Parallel Tools
	Interactive Serial Debuggers
	Debugging From Dumps (1)
	Debugging From Dumps (2)
	Debugging From Dumps (3)
	Built-in MPI Facility (1)
	Built-in MPI Facility (2)
	Built-in MPI Facility (3)
	MPI Memory Optimisation (1)
	MPI Memory Optimisation (2)
	MPI Memory Optimisation (3)
	MPI Performance
	Design For Performance (1)
	Design For Performance (2)
	Design For Performance (3)
	Design For Performance (4)
	High-Level Approach (1)
	High-Level Approach (2)
	Bundling
	Advanced Tuning
	Elapsed Time (1)
	Elapsed Time (2)
	Elapsed Time (3)
	Elapsed Time (4)
	Progress (1)
	Progress (2)
	Processes vs CPUs
	Multi-Core Systems
	Serial MPI Processes on SMP
	Collectives (1)
	Collectives (2)
	Behind The Scenes (1)
	Behind The Scenes (2)
	Eager Execution
	Lazy Execution
	Asynchronous Execution
	Asynchronous Transfers
	Reminder

